These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24261477)

  • 1. Topological structural transformations of nanoparticle self-assemblies mediated by phase transfer and their application as organic-inorganic hybrid photodetectors.
    Shen Y; Lei D; Tan J; Feng Y; Zhang B; Li Y; Dong H; Hu W; Feng W
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12254-61. PubMed ID: 24261477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The study on size dependent dipole-dipole interaction in the self-assembly of twisting nanoribbons with circular polarization activation.
    Yan B; Ma C; Lv B; Zhu J; Li Y; Cai P; Gao F; Ye Z; Sui C; Cheng G; Lin Q; Wu X; Shi Y
    Nanotechnology; 2019 Sep; 30(38):385602. PubMed ID: 31216513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances towards the fabrication and biomedical applications of responsive polymeric assemblies and nanoparticle hybrid superstructures.
    Hu X; Liu S
    Dalton Trans; 2015 Mar; 44(9):3904-22. PubMed ID: 25579704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient electrostatic self-assembly of one-dimensional CdS-Au nanocomposites with enhanced photoactivity, not the surface plasmon resonance effect.
    Liu S; Xu YJ
    Nanoscale; 2013 Oct; 5(19):9330-9. PubMed ID: 23955150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of TiO2 nanoparticles on self-assembly behaviors and optical and photovoltaic properties of the P3HT-b-P2VP block copolymer.
    Yen WC; Lee YH; Lin JF; Dai CA; Jeng US; Su WF
    Langmuir; 2011 Jan; 27(1):109-15. PubMed ID: 21141849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of nanoparticle superstructures on the basis of host-guest interaction to achieve performance integration and modulation.
    Chen Z; Li J; Zhang X; Wu Z; Zhang H; Sun H; Yang B
    Phys Chem Chem Phys; 2012 May; 14(17):6119-25. PubMed ID: 22441168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle Assemblies into Luminescent Dendrites in Shrinking Microdroplets.
    Kojima T; Hirai K; Zhou Y; Weerappuli P; Takayama S; Kotov NA
    Langmuir; 2016 Nov; 32(47):12468-12475. PubMed ID: 27571169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental transformations of silver nanoparticles: impact on stability and toxicity.
    Levard C; Hotze EM; Lowry GV; Brown GE
    Environ Sci Technol; 2012 Jul; 46(13):6900-14. PubMed ID: 22339502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional nanocomposites with perfect nanoblending between water-soluble polymers and hydrophobic inorganic nanoparticles: applications to electric-stimuli-responsive films.
    Cheong S; Kim JK; Cho J
    Nanoscale; 2016 Nov; 8(43):18315-18325. PubMed ID: 27714184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecule-nanoparticle hybrid systems for bioelectronic applications.
    Willner I; Willner B; Katz E
    Bioelectrochemistry; 2007 Jan; 70(1):2-11. PubMed ID: 16750941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles.
    Zhang R; Ning Z; Zhang Y; Xie H; Zhang Q; Qian W; Chen Q; Wei F
    Nanoscale; 2013 Jul; 5(14):6584-8. PubMed ID: 23759997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable magnetic properties of nanoparticle two-dimensional assemblies addressed by mixed self-assembled monolayers.
    Pichon BP; Pauly M; Marie P; Leuvrey C; Begin-Colin S
    Langmuir; 2011 May; 27(10):6235-43. PubMed ID: 21495667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid phase transfer method for nanoparticles using alkylamine stabilizers.
    Wang X; Xu S; Zhou J; Xu W
    J Colloid Interface Sci; 2010 Aug; 348(1):24-8. PubMed ID: 20427048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase.
    Gu Z; Zou L; Fang Z; Zhu W; Zhong X
    Nanotechnology; 2008 Apr; 19(13):135604. PubMed ID: 19636153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent assemblies of nanoparticle mixtures in thin films.
    Kao J; Bai P; Lucas JM; Alivisatos AP; Xu T
    J Am Chem Soc; 2013 Feb; 135(5):1680-3. PubMed ID: 23327718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.