These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24261631)

  • 1. Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings.
    Fu J; Chen T; Wang M; Yang N; Li S; Wang Y; Liu X
    ACS Nano; 2013 Dec; 7(12):11397-408. PubMed ID: 24261631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple-Stimuli-Responsive Smart Nanocontainers Enhanced Self-Healing Anticorrosion Coatings for Protection of Aluminum Alloy.
    Wang T; Du J; Ye S; Tan L; Fu J
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4425-4438. PubMed ID: 30608123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers.
    Chen T; Fu J
    Nanotechnology; 2012 Dec; 23(50):505705. PubMed ID: 23165151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-responsive nanovalves based on hollow mesoporous silica spheres for controlled release of corrosion inhibitor.
    Chen T; Fu J
    Nanotechnology; 2012 Jun; 23(23):235605. PubMed ID: 22595678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part I: influence of nanocontainer concentration.
    Borisova D; Möhwald H; Shchukin DG
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2931-9. PubMed ID: 22594300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous silica nanoparticles for active corrosion protection.
    Borisova D; Möhwald H; Shchukin DG
    ACS Nano; 2011 Mar; 5(3):1939-46. PubMed ID: 21344888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart waterborne composite coating with passive/active protective performances using nanocontainers based on metal organic frameworks derived layered double hydroxides.
    Zhou C; Zhang H; Pan X; Li J; Chen B; Gong W; Yang Q; Luo X; Zeng H; Liu Y
    J Colloid Interface Sci; 2022 Aug; 619():132-147. PubMed ID: 35381482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Functionalization of Nanocontainers on Self-Healing Anticorrosive Coatings.
    Zheng Z; Schenderlein M; Huang X; Brownbill NJ; Blanc F; Shchukin D
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22756-66. PubMed ID: 26393678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica nanocontainers for active corrosion protection.
    Maia F; Tedim J; Lisenkov AD; Salak AN; Zheludkevich ML; Ferreira MG
    Nanoscale; 2012 Feb; 4(4):1287-98. PubMed ID: 22249939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part II: influence of nanocontainer position.
    Borisova D; Möhwald H; Shchukin DG
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):80-7. PubMed ID: 23237235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The design strategy of intelligent biomedical magnesium with controlled-release platform.
    Bi Y; Zhu X; Zhao J; Cui H; Wang Z; Li Y; Wang CQ
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():254-263. PubMed ID: 30678910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO
    Jin Y; Duan H; Zhan S; Tu J; Yang T; Zhang W; Ma L; Yu H; Jia D
    ACS Appl Mater Interfaces; 2023 Nov; 15(45):52971-52983. PubMed ID: 38104278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Electrochemical Evaluation of MSNs-PbAE Nanocontainers for the Controlled Release of Caffeine as a Corrosion Inhibitor.
    Aguirre-Pulido M; González-Sánchez JA; Dzib-Pérez LR; Soria-Castro M; Ávila-Ortega A; Talavera-Pech WA
    Pharmaceutics; 2022 Nov; 14(12):. PubMed ID: 36559164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadruple Stimuli-Responsive Mechanized Silica Nanoparticles: A Promising Multifunctional Nanomaterial for Diverse Applications.
    Ding C; Tong L; Fu J
    Chemistry; 2017 Oct; 23(60):15041-15045. PubMed ID: 28940669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy.
    Xie ZH; Li D; Skeete Z; Sharma A; Zhong CJ
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36247-36260. PubMed ID: 28945337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart coatings embedded with polydopamine-decorated layer-by-layer assembled SnO
    Chen Z; Yang W; Chen Y; Yin X; Liu Y
    J Colloid Interface Sci; 2020 Nov; 579():741-753. PubMed ID: 32673851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces.
    Liang Y; Wang M; Wang C; Feng J; Li J; Wang L; Fu J
    Nanoscale Res Lett; 2016 Dec; 11(1):231. PubMed ID: 27121439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers.
    Tedim J; Poznyak SK; Kuznetsova A; Raps D; Hack T; Zheludkevich ML; Ferreira MG
    ACS Appl Mater Interfaces; 2010 May; 2(5):1528-35. PubMed ID: 20455547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc-Layered Hydroxide Salt Intercalated with Molybdate Anions as a New Smart Nanocontainer for Active Corrosion Protection of Carbon Steel.
    Abrantes Leal D; Wypych F; Bruno Marino CE
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19823-19833. PubMed ID: 32297507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocontainer-based corrosion sensing coating.
    Maia F; Tedim J; Bastos AC; Ferreira MG; Zheludkevich ML
    Nanotechnology; 2013 Oct; 24(41):415502. PubMed ID: 24045136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.