BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24261645)

  • 1. Superenantioselective chiral surface explosions.
    Gellman AJ; Huang Y; Feng X; Pushkarev VV; Holsclaw B; Mhatre BS
    J Am Chem Soc; 2013 Dec; 135(51):19208-14. PubMed ID: 24261645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantiospecific electrodeposition of chiral CuO films on single-crystal Cu(111).
    Bohannan EW; Kothari HM; Nicic IM; Switzer JA
    J Am Chem Soc; 2004 Jan; 126(2):488-9. PubMed ID: 14719945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective separation on a naturally chiral surface.
    Horvath JD; Koritnik A; Kamakoti P; Sholl DS; Gellman AJ
    J Am Chem Soc; 2004 Nov; 126(45):14988-94. PubMed ID: 15535728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantiospecific Adsorption of Amino Acids on Naturally Chiral Cu{3,1,17}R&S Surfaces.
    Yun Y; Gellman AJ
    Langmuir; 2015 Jun; 31(22):6055-63. PubMed ID: 25933641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiospecific equilibrium adsorption and chemistry of d-/l-proline mixtures on chiral and achiral Cu surfaces.
    Dutta S; Gellman AJ
    Chirality; 2020 Feb; 32(2):200-214. PubMed ID: 31762092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.
    Cheong WY; Gellman AJ
    Langmuir; 2012 Oct; 28(43):15251-62. PubMed ID: 23020648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of homochirality in achiral enantiomorphous monolayers.
    Parschau M; Romer S; Ernst KH
    J Am Chem Soc; 2004 Dec; 126(47):15398-9. PubMed ID: 15563164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiospecific Adsorption and Decomposition of D- and L-Asp Mixtures on Cu(643)
    Dutta S; Gellman AJ
    Chimia (Aarau); 2018 Jun; 72(6):404-410. PubMed ID: 29941077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective surface chemistry of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S.
    Rampulla DM; Francis AJ; Knight KS; Gellman AJ
    J Phys Chem B; 2006 Jun; 110(21):10411-20. PubMed ID: 16722747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces.
    Horvath JD; Gellman AJ
    J Am Chem Soc; 2002 Mar; 124(10):2384-92. PubMed ID: 11878996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for chemical transformations of (R,R)-tartaric acid on Cu(110): A first principles study.
    Zhang J; Lu T; Jiang C; Zou J; Cao F; Chen Y
    J Chem Phys; 2009 Oct; 131(14):144703. PubMed ID: 19831460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral molecules adsorbed on a solid surface: Tartaric acid diastereomers and their surface explosion on Cu(111).
    Rieger A; Sax C; Bauert T; Wäckerlin C; Ernst KH
    Chirality; 2018 Apr; 30(4):369-377. PubMed ID: 29437251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition and ordering at surfaces: the importance of handedness and footedness.
    Mark AG; Forster M; Raval R
    Chemphyschem; 2011 Jun; 12(8):1474-80. PubMed ID: 21523877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-sensitive enantiospecific adsorption on naturally chiral Cu(hkl)
    Gellman AJ; Huang Y; Koritnik AJ; Horvath JD
    J Phys Condens Matter; 2017 Jan; 29(3):034001. PubMed ID: 27845932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemisorptive enantioselectivity of chiral epoxides on tartaric-acid modified Pd(111): three-point bonding.
    Mahapatra M; Tysoe WT
    Phys Chem Chem Phys; 2015 Feb; 17(7):5450-8. PubMed ID: 25615560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular assembly of strongly chemisorbed size- and shape-defined chiral clusters: S- and R-alanine on Cu(110).
    Barlow SM; Louafi S; Le Roux D; Williams J; Muryn C; Haq S; Raval R
    Langmuir; 2004 Aug; 20(17):7171-6. PubMed ID: 15301502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17)(R&S) surfaces.
    Yun Y; Gellman AJ
    Angew Chem Int Ed Engl; 2013 Mar; 52(12):3394-7. PubMed ID: 23404826
    [No Abstract]   [Full Text] [Related]  

  • 18. Extended surface chirality for enantiospecific adsorption.
    Szabelski P
    Chemistry; 2008; 14(27):8312-21. PubMed ID: 18645995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirally-modified metal surfaces: energetics of interaction with chiral molecules.
    Dementyev P; Peter M; Adamovsky S; Schauermann S
    Phys Chem Chem Phys; 2015 Sep; 17(35):22726-35. PubMed ID: 26256836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing enantioselectivity on chirally modified Cu(110), Cu(100), and Cu(111) surfaces.
    Cheong WY; Huang Y; Dangaria N; Gellman AJ
    Langmuir; 2010 Nov; 26(21):16412-23. PubMed ID: 20973584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.