These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24261658)

  • 1. Temperature effect on radiative lifetimes: the case of singlet oxygen in liquid solvents.
    Jensen RL; Holmegaard L; Ogilby PR
    J Phys Chem B; 2013 Dec; 117(50):16227-35. PubMed ID: 24261658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Solvent on the O2(a(1)Δg) → O2(b(1)Σg(+)) Absorption Coefficient.
    Bregnhøj M; Ogilby PR
    J Phys Chem A; 2015 Sep; 119(35):9236-43. PubMed ID: 26181520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture.
    Bregnhøj M; Westberg M; Minaev BF; Ogilby PR
    Acc Chem Res; 2017 Aug; 50(8):1920-1927. PubMed ID: 28731691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent and Heavy-Atom Effects on the O
    Bregnhøj M; Krægpøth MV; Sørensen RJ; Westberg M; Ogilby PR
    J Phys Chem A; 2016 Oct; 120(42):8285-8296. PubMed ID: 27689752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions.
    Bregnhøj M; Westberg M; Jensen F; Ogilby PR
    Phys Chem Chem Phys; 2016 Aug; 18(33):22946-61. PubMed ID: 27484979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbed and Activated Decay: The Lifetime of Singlet Oxygen in Liquid Organic Solvents.
    Thorning F; Henke P; Ogilby PR
    J Am Chem Soc; 2022 Jun; 144(24):10902-10911. PubMed ID: 35686951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X
    Bregnhøj M; McLoughlin CK; Breitenbach T; Ogilby PR
    J Phys Chem A; 2022 Jun; 126(23):3839-3845. PubMed ID: 35649157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent dependent photosensitized singlet oxygen production from an Ir(III) complex: pointing to problems in studies of singlet-oxygen-mediated cell death.
    Takizawa SY; Breitenbach T; Westberg M; Holmegaard L; Gollmer A; Jensen RL; Murata S; Ogilby PR
    Photochem Photobiol Sci; 2015 Oct; 14(10):1831-43. PubMed ID: 26255622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O₂(X³Σg⁻) and O₂(a¹Δg) charge exchange with simple ions.
    Ziółkowski M; Schatz GC; Viggiano AA; Midey A; Dotan I
    J Chem Phys; 2014 Jun; 140(21):214307. PubMed ID: 24908008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-encapsulated bilirubin: paving the way to a useful probe for singlet oxygen.
    Pimenta FM; Jensen JK; Etzerodt M; Ogilby PR
    Photochem Photobiol Sci; 2015 Apr; 14(4):665-77. PubMed ID: 25554241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Effect of Solvents on Nonradiative Singlet Oxygen Deactivation: Going beyond Weak Coupling in Intermolecular Electronic-to-Vibrational Energy Transfer.
    Thorning F; Jensen F; Ogilby PR
    J Phys Chem B; 2020 Mar; 124(11):2245-2254. PubMed ID: 32068402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitized generation of singlet oxygen from Re(I) complexes: a photophysical study using LIOAS and luminescence techniques.
    Ragone F; Martinez Saavedra HH; David Gara PM; Ruiz GT; Wolcan E
    J Phys Chem A; 2013 May; 117(21):4428-35. PubMed ID: 23642169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature effects on the solvent-dependent deactivation of singlet oxygen.
    Jensen RL; Arnbjerg J; Ogilby PR
    J Am Chem Soc; 2010 Jun; 132(23):8098-105. PubMed ID: 20491478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitized singlet oxygen luminescence from the protein matrix of Zn-substituted myoglobin.
    Lepeshkevich SV; Parkhats MV; Stasheuski AS; Britikov VV; Jarnikova ES; Usanov SA; Dzhagarov BM
    J Phys Chem A; 2014 Mar; 118(10):1864-78. PubMed ID: 24552592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodissociation of singlet oxygen in the UV region.
    Farooq Z; Chestakov DA; Yan B; Groenenboom GC; van der Zande WJ; Parker DH
    Phys Chem Chem Phys; 2014 Feb; 16(7):3305-16. PubMed ID: 24413090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtle structural changes in octupolar merocyanine dyes influence the photosensitized production of singlet oxygen.
    Bregnhøj M; Pimenta FM; Poronik YM; Gryko DT; Ogilby PR
    Photochem Photobiol Sci; 2015 Jun; 14(6):1138-46. PubMed ID: 25940688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies.
    Krasnovsky AA
    Membr Cell Biol; 1998; 12(5):665-90. PubMed ID: 10379647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of quenching by oxygen of the excited states of ruthenium(II) complexes in aqueous media. Solvent isotope effect and photosensitized generation of singlet oxygen, O2(1Deltag), by [Ru(diimine)(CN)4]2- complex ions.
    Abdel-Shafi AA; Ward MD; Schmidt R
    Dalton Trans; 2007 Jun; (24):2517-27. PubMed ID: 17563787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioxanthone Dioxide Triplet States Have Low Oxygen Quenching Rate Constants.
    Jockusch S; Kazancioglu EO; Karaca N; Arsu N; Landgraf S; Ogilby PR
    J Phys Chem B; 2024 Jan; 128(1):244-249. PubMed ID: 38151819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct 765 nm Optical Excitation of Molecular Oxygen in Solution and in Single Mammalian Cells.
    Bregnhøj M; Blázquez-Castro A; Westberg M; Breitenbach T; Ogilby PR
    J Phys Chem B; 2015 Apr; 119(17):5422-9. PubMed ID: 25856010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.