BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24261692)

  • 1. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.
    Wiersma-Koch H; Sunden F; Herschlag D
    Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily.
    Lassila JK; Herschlag D
    Biochemistry; 2008 Dec; 47(48):12853-9. PubMed ID: 18975918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.
    Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D
    J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of phosphodiester hydrolysis in nucleotide pyrophosphatase/phosphodiesterase. Environmental effects on the reaction mechanism.
    López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I
    J Am Chem Soc; 2010 May; 132(20):6955-63. PubMed ID: 20429564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum.
    Jonas S; van Loo B; Hyvönen M; Hollfelder F
    J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition States and Control of Substrate Preference in the Promiscuous Phosphatase PP1.
    Chu Y; Williams NH; Hengge AC
    Biochemistry; 2017 Aug; 56(30):3923-3933. PubMed ID: 28678475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the 2',3' cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase.
    Keppetipola N; Shuman S
    Nucleic Acids Res; 2007; 35(22):7721-32. PubMed ID: 17986465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The promiscuous ectonucleotidase NPP1: molecular insights into substrate binding and hydrolysis.
    Namasivayam V; Lee SY; Müller CE
    Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):603-614. PubMed ID: 28011303
    [No Abstract]   [Full Text] [Related]  

  • 14. The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis.
    Hadler KS; Gahan LR; Ollis DL; Schenk G
    J Inorg Biochem; 2010 Feb; 104(2):211-3. PubMed ID: 19923005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of wheat (Triticum aestivum L.) nucleotide pyrophosphatase/phosphodiesterase shows the role of six amino acids in the catalytic mechanism.
    Joye IJ; Beliën T; Brijs K; Soetaert W; Delcour JA
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):173-80. PubMed ID: 21190107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study.
    Paul TJ; Schenk G; Prabhakar R
    J Phys Chem B; 2018 Jun; 122(22):5797-5808. PubMed ID: 29723477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases.
    Gijsbers R; Ceulemans H; Stalmans W; Bollen M
    J Biol Chem; 2001 Jan; 276(2):1361-8. PubMed ID: 11027689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation.
    Podzelinska K; He SM; Wathier M; Yakunin A; Proudfoot M; Hove-Jensen B; Zechel DL; Jia Z
    J Biol Chem; 2009 Jun; 284(25):17216-17226. PubMed ID: 19366688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.