These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 24261718)
1. Determination of exciton reduced mass and gyromagnetic factor of wurtzite (InGa)As nanowires by photoluminescence spectroscopy under high magnetic fields. De Luca M; Polimeni A; Capizzi M; Meaney AJ; Christianen PC; Maan JK; Mura F; Rubini S; Martelli F ACS Nano; 2013 Dec; 7(12):10717-25. PubMed ID: 24261718 [TBL] [Abstract][Full Text] [Related]
2. Addressing the Fundamental Electronic Properties of Wurtzite GaAs Nanowires by High-Field Magneto-Photoluminescence Spectroscopy. De Luca M; Rubini S; Felici M; Meaney A; Christianen PCM; Martelli F; Polimeni A Nano Lett; 2017 Nov; 17(11):6540-6547. PubMed ID: 29035544 [TBL] [Abstract][Full Text] [Related]
3. Magneto-optical properties of wurtzite-phase InP nanowires. De Luca M; Polimeni A; Fonseka HA; Meaney AJ; Christianen PC; Maan JC; Paiman S; Tan HH; Mura F; Jagadish C; Capizzi M Nano Lett; 2014 Aug; 14(8):4250-6. PubMed ID: 24972081 [TBL] [Abstract][Full Text] [Related]
4. Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction. Tedeschi D; Fonseka HA; Blundo E; Granados Del Águila A; Guo Y; Tan HH; Christianen PCM; Jagadish C; Polimeni A; De Luca M ACS Nano; 2020 Sep; 14(9):11613-11622. PubMed ID: 32865391 [TBL] [Abstract][Full Text] [Related]
5. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires. Zilli A; De Luca M; Tedeschi D; Fonseka HA; Miriametro A; Tan HH; Jagadish C; Capizzi M; Polimeni A ACS Nano; 2015 Apr; 9(4):4277-87. PubMed ID: 25801648 [TBL] [Abstract][Full Text] [Related]
6. High optical quality single crystal phase wurtzite and zincblende InP nanowires. Vu TT; Zehender T; Verheijen MA; Plissard SR; Immink GW; Haverkort JE; Bakkers EP Nanotechnology; 2013 Mar; 24(11):115705. PubMed ID: 23455417 [TBL] [Abstract][Full Text] [Related]
7. Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires. Tedeschi D; De Luca M; Granados Del Águila A; Gao Q; Ambrosio G; Capizzi M; Tan HH; Christianen PC; Jagadish C; Polimeni A Nano Lett; 2016 Oct; 16(10):6213-6221. PubMed ID: 27676609 [TBL] [Abstract][Full Text] [Related]
8. Radiative recombination mechanisms in individual wurtzite ZnSe nanowires with a defect-free single-crystalline microstructure. Saxena A; Pan Q; Ruda HE Nanoscale; 2013 Apr; 5(7):2875-82. PubMed ID: 23446447 [TBL] [Abstract][Full Text] [Related]
9. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Kim J; Wong CY; Scholes GD Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542 [TBL] [Abstract][Full Text] [Related]
10. Time- and polarization-resolved optical spectroscopy of colloidal CdSe nanocrystal quantum dots in high magnetic fields. Furis M; Hollingsworth JA; Klimov VI; Crooker SA J Phys Chem B; 2005 Aug; 109(32):15332-8. PubMed ID: 16852944 [TBL] [Abstract][Full Text] [Related]
11. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer. Kaveh M; Gao Q; Jagadish C; Ge J; Duscher G; Wagner HP Nanotechnology; 2016 Dec; 27(48):485204. PubMed ID: 27811405 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional magneto-photoluminescence as a probe of the electronic properties of crystal-phase quantum disks in GaAs nanowires. Corfdir P; Van Hattem B; Uccelli E; Conesa-Boj S; Lefebvre P; Fontcuberta i Morral A; Phillips RT Nano Lett; 2013 Nov; 13(11):5303-10. PubMed ID: 24134509 [TBL] [Abstract][Full Text] [Related]
13. Correlated micro-photoluminescence and electron microscopy studies of the same individual heterostructured semiconductor nanowires. Todorovic J; Moses AF; Karlberg T; Olk P; Dheeraj DL; Fimland BO; Weman H; van Helvoort AT Nanotechnology; 2011 Aug; 22(32):325707. PubMed ID: 21775779 [TBL] [Abstract][Full Text] [Related]
14. Bent Polytypic ZnSe and CdSe Nanowires Probed by Photoluminescence. Kim Y; Im HS; Park K; Kim J; Ahn JP; Yoo SJ; Kim JG; Park J Small; 2017 May; 13(19):. PubMed ID: 28296175 [TBL] [Abstract][Full Text] [Related]
15. Band-edge exciton fine structure of single CdSe/ZnS nanocrystals in external magnetic fields. Biadala L; Louyer Y; Tamarat P; Lounis B Phys Rev Lett; 2010 Oct; 105(15):157402. PubMed ID: 21230937 [TBL] [Abstract][Full Text] [Related]
16. Origin of strong photoluminescence polarization in GaNP nanowires. Filippov S; Sukrittanon S; Kuang Y; Tu C; Persson PO; Chen WM; Buyanova IA Nano Lett; 2014 Sep; 14(9):5264-9. PubMed ID: 25162940 [TBL] [Abstract][Full Text] [Related]
18. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates. Sun MH; Leong ES; Chin AH; Ning CZ; Cirlin GE; Samsonenko YB; Dubrovskii VG; Chuang L; Chang-Hasnain C Nanotechnology; 2010 Aug; 21(33):335705. PubMed ID: 20657047 [TBL] [Abstract][Full Text] [Related]
19. Long-Lived Hot Carriers in III-V Nanowires. Tedeschi D; De Luca M; Fonseka HA; Gao Q; Mura F; Tan HH; Rubini S; Martelli F; Jagadish C; Capizzi M; Polimeni A Nano Lett; 2016 May; 16(5):3085-93. PubMed ID: 27104870 [TBL] [Abstract][Full Text] [Related]
20. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires. Schmidt TM; Miwa RH Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]