BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24261844)

  • 1. Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.
    Fujii M; Dang TC; Bligh MW; Rose AL; Waite TD
    Environ Sci Technol; 2014; 48(1):365-74. PubMed ID: 24261844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of light on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.
    Fujii M; Dang TC; Rose AL; Omura T; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1391-8. PubMed ID: 21265504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fe(II) and Fe(III) transformation kinetics on iron acquisition by a toxic strain of Microcystis aeruginosa.
    Fujii M; Rose AL; Omura T; Waite TD
    Environ Sci Technol; 2010 Mar; 44(6):1980-6. PubMed ID: 20175526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and kinetics of dark iron redox transformations in previously photolyzed acidic natural organic matter solutions.
    Garg S; Ito H; Rose AL; Waite TD
    Environ Sci Technol; 2013 Feb; 47(4):1861-9. PubMed ID: 23331166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of pH on Iron Redox Transformations in Simulated Freshwaters Containing Natural Organic Matter.
    Garg S; Jiang C; Waite TD
    Environ Sci Technol; 2018 Nov; 52(22):13184-13194. PubMed ID: 30362718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron uptake by bloom-forming freshwater cyanobacterium Microcystis aeruginosa in natural and effluent waters.
    Fu QL; Fujii M; Natsuike M; Waite TD
    Environ Pollut; 2019 Apr; 247():392-400. PubMed ID: 30690235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox Transformations of Iron in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa under Conditions Typical of Natural Waters.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Mar; 51(6):3287-3297. PubMed ID: 28233985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of the freshwater cyanobacterium Microcystis aeruginosa grown in iron-limited continuous culture.
    Dang TC; Fujii M; Rose AL; Bligh M; Waite TD
    Appl Environ Microbiol; 2012 Mar; 78(5):1574-83. PubMed ID: 22210212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive Effects of Calcium and Magnesium Ions on the Photochemical Transformation and Associated Cellular Uptake of Iron by the Freshwater Cyanobacterial Phytoplankton Microcystis aeruginosa.
    Fujii M; Yeung AC; Waite TD
    Environ Sci Technol; 2015 Aug; 49(15):9133-42. PubMed ID: 26132788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights.
    Garg S; Jiang C; Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Aug; 47(16):9190-7. PubMed ID: 23879362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter.
    Bligh MW; Waite TD
    Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron Redox Transformations in the Presence of Natural Organic Matter: Effect of Calcium.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2017 Sep; 51(18):10413-10422. PubMed ID: 28782358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Mediated Reactive Oxygen Species Generation and Iron Redox Transformations in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Aug; 51(15):8384-8395. PubMed ID: 28650640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters.
    Miller CJ; Vincent Lee SM; Rose AL; Waite TD
    Environ Sci Technol; 2012 Oct; 46(20):11078-85. PubMed ID: 22985332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Cu(II) reduction by natural organic matter.
    Pham AN; Rose AL; Waite TD
    J Phys Chem A; 2012 Jun; 116(25):6590-9. PubMed ID: 22574891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-oxidation of arsenite in acidic waters containing Suwannee River fulvic acid: roles of
    Wang Y; Gong X; Dong X
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45144-45154. PubMed ID: 33864218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters.
    Garg S; Xing G; Waite TD
    Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions.
    Yan M; Dryer D; Korshin GV; Benedetti MF
    Water Res; 2013 Feb; 47(2):588-96. PubMed ID: 23174533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters.
    Xing G; Garg S; Miller CJ; Pham AN; Waite TD
    Environ Sci Technol; 2020 Feb; 54(4):2334-2343. PubMed ID: 31999104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.