These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Plastid marker gene excision in greenhouse-grown tobacco by agrobacterium-delivered Cre recombinase. Tungsuchat-Huang T; Maliga P Methods Mol Biol; 2014; 1132():205-20. PubMed ID: 24599855 [TBL] [Abstract][Full Text] [Related]
9. Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats. Tungsuchat-Huang T; Sinagawa-García SR; Paredes-López O; Maliga P Plant Physiol; 2010 May; 153(1):252-9. PubMed ID: 20228154 [TBL] [Abstract][Full Text] [Related]
10. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Maliga P; Svab Z Methods Mol Biol; 2011; 701():37-50. PubMed ID: 21181523 [TBL] [Abstract][Full Text] [Related]
11. Visual marker and Agrobacterium-delivered recombinase enable the manipulation of the plastid genome in greenhouse-grown tobacco plants. Tungsuchat-Huang T; Maliga P Plant J; 2012 May; 70(4):717-25. PubMed ID: 22268515 [TBL] [Abstract][Full Text] [Related]
12. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Bock R Annu Rev Plant Biol; 2015; 66():211-41. PubMed ID: 25494465 [TBL] [Abstract][Full Text] [Related]
13. Construction of marker-free transplastomic plants. Lutz KA; Maliga P Curr Opin Biotechnol; 2007 Apr; 18(2):107-14. PubMed ID: 17339108 [TBL] [Abstract][Full Text] [Related]
14. Plastid Marker Gene Excision in the Tobacco Shoot Apex by Agrobacterium-Delivered Cre Recombinase. Tungsuchat-Huang T; Maliga P Methods Mol Biol; 2021; 2317():177-193. PubMed ID: 34028769 [TBL] [Abstract][Full Text] [Related]
15. Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Klaus SM; Huang FC; Golds TJ; Koop HU Nat Biotechnol; 2004 Feb; 22(2):225-9. PubMed ID: 14730316 [TBL] [Abstract][Full Text] [Related]
16. Plastid transformation in Nicotiana tabacum and Nicotiana sylvestris by biolistic DNA delivery to leaves. Maliga P; Tungsuchat-Huang T Methods Mol Biol; 2014; 1132():147-63. PubMed ID: 24599851 [TBL] [Abstract][Full Text] [Related]
17. Functionality of the beta/six site-specific recombination system in tobacco and Arabidopsis: a novel tool for genetic engineering of plant genomes. Grønlund JT; Stemmer C; Lichota J; Merkle T; Grasser KD Plant Mol Biol; 2007 Mar; 63(4):545-56. PubMed ID: 17131098 [TBL] [Abstract][Full Text] [Related]
18. Transformation of the Plastid Genome in Tobacco: The Model System for Chloroplast Genome Engineering. Maliga P; Tungsuchat-Huang T; Lutz KA Methods Mol Biol; 2021; 2317():135-153. PubMed ID: 34028766 [TBL] [Abstract][Full Text] [Related]
19. PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. Thomson JG; Chan R; Thilmony R; Yau YY; Ow DW BMC Biotechnol; 2010 Feb; 10():17. PubMed ID: 20178628 [TBL] [Abstract][Full Text] [Related]
20. Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Lutz KA; Maliga P Plant J; 2008 Dec; 56(6):975-83. PubMed ID: 18702667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]