These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24262149)

  • 1. Both the cis-trans equilibrium and isomerization dynamics of a single proline amide modulate β2-microglobulin amyloid assembly.
    Torbeev VY; Hilvert D
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20051-6. PubMed ID: 24262149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of proline32 by α-methylproline preorganizes β2-microglobulin for oligomerization but not for aggregation into amyloids.
    Torbeev V; Ebert MO; Dolenc J; Hilvert D
    J Am Chem Soc; 2015 Feb; 137(7):2524-35. PubMed ID: 25633201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of an early native-like intermediate of β2-microglobulin amyloidogenesis.
    Vanderhaegen S; Fislage M; Domanska K; Versées W; Pardon E; Bellotti V; Steyaert J
    Protein Sci; 2013 Oct; 22(10):1349-57. PubMed ID: 23904325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generic mechanism of beta2-microglobulin amyloid assembly at neutral pH involving a specific proline switch.
    Eichner T; Radford SE
    J Mol Biol; 2009 Mar; 386(5):1312-26. PubMed ID: 19452600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline isomerization effects in the amyloidogenic protein β
    Maschio MC; Fregoni J; Molteni C; Corni S
    Phys Chem Chem Phys; 2021 Jan; 23(1):356-367. PubMed ID: 33346272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic coupling of folding and prolyl isomerization of beta2-microglobulin studied by mutational analysis.
    Sakata M; Chatani E; Kameda A; Sakurai K; Naiki H; Goto Y
    J Mol Biol; 2008 Oct; 382(5):1242-55. PubMed ID: 18708068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance characterization of the refolding intermediate of beta2-microglobulin trapped by non-native prolyl peptide bond.
    Kameda A; Hoshino M; Higurashi T; Takahashi S; Naiki H; Goto Y
    J Mol Biol; 2005 Apr; 348(2):383-97. PubMed ID: 15811375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibrillar vs crystalline full-length beta-2-microglobulin studied by high-resolution solid-state NMR spectroscopy.
    Barbet-Massin E; Ricagno S; Lewandowski JR; Giorgetti S; Bellotti V; Bolognesi M; Emsley L; Pintacuda G
    J Am Chem Soc; 2010 Apr; 132(16):5556-7. PubMed ID: 20356307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation.
    Meng HY; Thomas KM; Lee AE; Zondlo NJ
    Biopolymers; 2006; 84(2):192-204. PubMed ID: 16208767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper binding to beta-2-microglobulin and its pre-amyloid oligomers.
    Srikanth R; Mendoza VL; Bridgewater JD; Zhang G; Vachet RW
    Biochemistry; 2009 Oct; 48(41):9871-81. PubMed ID: 19754160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple cis-trans conformers of the prolactin receptor proline-rich motif (PRM) peptide detected by reverse-phase HPLC, CD and NMR spectroscopy.
    O'Neal KD; Chari MV; Mcdonald CH; Cook RG; Yu-Lee LY; Morrisett JD; Shearer WT
    Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):833-44. PubMed ID: 8645165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased β-Sheet Dynamics and D-E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin.
    Borotto NB; Zhang Z; Dong J; Burant B; Vachet RW
    Biochemistry; 2017 Feb; 56(8):1095-1104. PubMed ID: 28168880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the I
    Smith HI; Guthertz N; Cawood EE; Maya-Martinez R; Breeze AL; Radford SE
    J Biol Chem; 2020 Aug; 295(35):12474-12484. PubMed ID: 32661194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligomeric states along the folding pathways of β2-microglobulin: kinetics, thermodynamics, and structure.
    Rennella E; Cutuil T; Schanda P; Ayala I; Gabel F; Forge V; Corazza A; Esposito G; Brutscher B
    J Mol Biol; 2013 Aug; 425(15):2722-36. PubMed ID: 23648836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4,4-Difluoroproline as a Unique
    Ganguly HK; Ludwig BA; Tressler CM; Bhatt MR; Pandey AK; Quinn CM; Bai S; Yap GPA; Zondlo NJ
    Biochemistry; 2024 May; 63(9):1131-1146. PubMed ID: 38598681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heating during agitation of β
    Noji M; Sasahara K; Yamaguchi K; So M; Sakurai K; Kardos J; Naiki H; Goto Y
    J Biol Chem; 2019 Oct; 294(43):15826-15835. PubMed ID: 31495783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering.
    Tang HC; Lin YJ; Horng JC
    Proteins; 2014 Jan; 82(1):67-76. PubMed ID: 23839950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic biology of proteins: tuning GFPs folding and stability with fluoroproline.
    Steiner T; Hess P; Bae JH; Wiltschi B; Moroder L; Budisa N
    PLoS One; 2008 Feb; 3(2):e1680. PubMed ID: 18301757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic control of amide cis-trans isomerism via the aromatic-prolyl interaction.
    Thomas KM; Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Feb; 128(7):2216-7. PubMed ID: 16478167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interactions in the formation and deposition of beta2-microglobulin-related amyloid fibrils.
    Naiki H; Yamamoto S; Hasegawa K; Yamaguchi I; Goto Y; Gejyo F
    Amyloid; 2005 Mar; 12(1):15-25. PubMed ID: 16076607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.