These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 2426216)
1. Epithelial ion transport in rabbit corneas following myopic keratomileusis. Swinger CA; Candia OA; Marcus S; Barker BA; Kornmehl EW Invest Ophthalmol Vis Sci; 1986 Aug; 27(8):1277-80. PubMed ID: 2426216 [TBL] [Abstract][Full Text] [Related]
2. Changes in responsiveness of the beta-adrenergic and serotonergic pathways of the rabbit corneal epithelium. Neufeld AH; Ledgard SE; Yoza BK Invest Ophthalmol Vis Sci; 1983 May; 24(5):527-34. PubMed ID: 6132896 [TBL] [Abstract][Full Text] [Related]
3. Dopamine modulation of active ion transport in rabbit corneal epithelium. Crosson CE; Beuerman RW; Klyce SD Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1240-5. PubMed ID: 6208162 [TBL] [Abstract][Full Text] [Related]
4. Topical epinephrine causes a decrease in density of beta-adrenergic receptors and cathecholamine-stimulated chloride transport in the rabbit cornea. Candia OA; Neufeld AH Biochim Biophys Acta; 1978 Oct; 543(3):403-8. PubMed ID: 213130 [TBL] [Abstract][Full Text] [Related]
5. Neural serotonin stimulates chloride transport in the rabbit corneal epithelium. Klyce SD; Palkama KA; Härkönen M; Marshall WS; Huhtaniitty S; Mann KP; Neufeld AH Invest Ophthalmol Vis Sci; 1982 Aug; 23(2):181-92. PubMed ID: 6178711 [TBL] [Abstract][Full Text] [Related]
7. [Comparison of corneal wound healing of photorefractive keratectomy and laser in situ keratomileusis in rabbits]. Ma XH; Li JH; Bi HS; Zhou F; Li Y Zhonghua Yan Ke Za Zhi; 2003 Mar; 39(3):140-5. PubMed ID: 12880569 [TBL] [Abstract][Full Text] [Related]
8. Acetylcholine concentration and its role in ionic transport by the corneal epithelium. Pesin SR; Candia OA Invest Ophthalmol Vis Sci; 1982 May; 22(5):651-9. PubMed ID: 6978868 [TBL] [Abstract][Full Text] [Related]
9. Alteration of corneal epithelial ion transport by sympathectomy. Klyce SD; Beuerman RW; Crosson CE Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):434-42. PubMed ID: 2858455 [TBL] [Abstract][Full Text] [Related]
10. Modification by timolol of catecholamine stimulation of chloride transport in isolated corneas. Candia OA; Podos SM; Neufeld AH Invest Ophthalmol Vis Sci; 1979 Jul; 18(7):691-5. PubMed ID: 312796 [TBL] [Abstract][Full Text] [Related]
11. Adrenergic regulation of sodium and chloride transport in the isolated cornea of rabbit and man. Wiederholt M; Schmidt DK; Eggebrecht R; Zimmermann J; Fischer FH Graefes Arch Clin Exp Ophthalmol; 1983; 220(5):240-4. PubMed ID: 6138298 [TBL] [Abstract][Full Text] [Related]
12. The activation of chloride transport by epinephrine and Db cyclic-AMP in the cornea of the rabbit. Klyce SD; Neufeld AH; Zadunaisky JA Invest Ophthalmol; 1973 Feb; 12(2):127-39. PubMed ID: 4345919 [No Abstract] [Full Text] [Related]
13. Cyclic AMP-dependent stimulation of basolateral K(+)conductance in the rabbit conjunctival epithelium. Turner HC; Alvarez LJ; Candia OA Exp Eye Res; 2000 Mar; 70(3):295-305. PubMed ID: 10712816 [TBL] [Abstract][Full Text] [Related]
14. Gonadotropin action on brook trout sperm duct epithelium: ion transport stimulation mediated by cAMP and Ca2+. Marshall WS; Bryson SE; Idler DR Gen Comp Endocrinol; 1993 May; 90(2):232-42. PubMed ID: 7686522 [TBL] [Abstract][Full Text] [Related]
15. Action of epinephrine and other cyclic AMP-mediated agents on the chloride transport of the frog cornea. Chalfie M; Neufeld AH; Zadunaisky JA Invest Ophthalmol; 1972 Aug; 11(8):644-50. PubMed ID: 4339814 [No Abstract] [Full Text] [Related]
16. Adrenergic receptor activated ion transport in human fetal retinal pigment epithelium. Quinn RH; Quong JN; Miller SS Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):255-64. PubMed ID: 11133877 [TBL] [Abstract][Full Text] [Related]
17. Rotating brush for fast removal of corneal epithelium. Pallikaris IG; Karoutis AD; Lydataki SE; Siganos DS J Refract Corneal Surg; 1994; 10(4):439-42. PubMed ID: 7528616 [TBL] [Abstract][Full Text] [Related]
18. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface. Chang-Lin JE; Kim KJ; Lee VH Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039 [TBL] [Abstract][Full Text] [Related]
19. Biosynthetic responses of the rabbit cornea to a keratectomy wound. Zieske JD; Higashijima SC; Spurr-Michaud SJ; Gipson IK Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1668-77. PubMed ID: 3308758 [TBL] [Abstract][Full Text] [Related]
20. Confocal microscopic characterization of wound repair after photorefractive keratectomy. Møller-Pedersen T; Li HF; Petroll WM; Cavanagh HD; Jester JV Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):487-501. PubMed ID: 9501858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]