BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24262192)

  • 21.
    Thamaraikani T; Karnam M; Velapandian C
    CNS Neurol Disord Drug Targets; 2022; 21(4):343-353. PubMed ID: 34477539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase.
    Marchitti SA; Deitrich RA; Vasiliou V
    Pharmacol Rev; 2007 Jun; 59(2):125-50. PubMed ID: 17379813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration.
    Chen CH; Joshi AU; Mochly-Rosen D
    Acta Neurol Taiwan; 2016 Dec; 25(4)(4):111-123. PubMed ID: 28382610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired dopamine metabolism in Parkinson's disease pathogenesis.
    Masato A; Plotegher N; Boassa D; Bubacco L
    Mol Neurodegener; 2019 Aug; 14(1):35. PubMed ID: 31488222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.
    Fitzmaurice AG; Rhodes SL; Lulla A; Murphy NP; Lam HA; O'Donnell KC; Barnhill L; Casida JE; Cockburn M; Sagasti A; Stahl MC; Maidment NT; Ritz B; Bronstein JM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):636-41. PubMed ID: 23267077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal.
    Florang VR; Rees JN; Brogden NK; Anderson DG; Hurley TD; Doorn JA
    Neurotoxicology; 2007 Jan; 28(1):76-82. PubMed ID: 16956664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism.
    Klyosov AA; Rashkovetsky LG; Tahir MK; Keung WM
    Biochemistry; 1996 Apr; 35(14):4445-56. PubMed ID: 8605194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes.
    Klyosov AA
    Biochemistry; 1996 Apr; 35(14):4457-67. PubMed ID: 8605195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein aggregation in Parkinson's disease.
    Gundersen V
    Acta Neurol Scand Suppl; 2010; (190):82-7. PubMed ID: 20586742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of aldehyde dehydrogenase activity affects (±)-4-hydroxy-2E-nonenal (HNE) toxicity and HNE-protein adduct levels in PC12 cells.
    Kong D; Kotraiah V
    J Mol Neurosci; 2012 Jul; 47(3):595-603. PubMed ID: 22170038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human pancreas: implications for pathogenesis of alcohol-induced pancreatic injury.
    Chiang CP; Wu CW; Lee SP; Chung CC; Wang CW; Lee SL; Nieh S; Yin SJ
    Alcohol Clin Exp Res; 2009 Jun; 33(6):1059-68. PubMed ID: 19382905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondrial dysfunctions in Parkinson's disease.
    Gautier CA; Corti O; Brice A
    Rev Neurol (Paris); 2014 May; 170(5):339-43. PubMed ID: 24119854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abnormal levels of prohibitin and ATP synthase in the substantia nigra and frontal cortex in Parkinson's disease.
    Ferrer I; Perez E; Dalfó E; Barrachina M
    Neurosci Lett; 2007 Mar; 415(3):205-9. PubMed ID: 17284347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function.
    Miñones-Moyano E; Porta S; Escaramís G; Rabionet R; Iraola S; Kagerbauer B; Espinosa-Parrilla Y; Ferrer I; Estivill X; Martí E
    Hum Mol Genet; 2011 Aug; 20(15):3067-78. PubMed ID: 21558425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial aldehyde dehydrogenase, a potential drug target for protection of heart and brain from ischemia/reperfusion injury.
    Luo XJ; Liu B; Ma QL; Peng J
    Curr Drug Targets; 2014; 15(10):948-55. PubMed ID: 25163552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative inhibition of the mitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance in human blood vessels.
    Hink U; Daiber A; Kayhan N; Trischler J; Kraatz C; Oelze M; Mollnau H; Wenzel P; Vahl CF; Ho KK; Weiner H; Munzel T
    J Am Coll Cardiol; 2007 Dec; 50(23):2226-32. PubMed ID: 18061070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial aldehyde dehydrogenase and cardiac diseases.
    Chen CH; Sun L; Mochly-Rosen D
    Cardiovasc Res; 2010 Oct; 88(1):51-7. PubMed ID: 20558439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts.
    Yoval-Sánchez B; Rodríguez-Zavala JS
    Chem Res Toxicol; 2012 Mar; 25(3):722-9. PubMed ID: 22339434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.