These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 24262304)
1. Fabrication of nonbiofouling metal stent and in vitro studies on its hemocompatibility. Wang X; Miao J; Zhao H; Mao C; Chen X; Shen J J Biomater Appl; 2014 Jul; 29(1):14-25. PubMed ID: 24262304 [TBL] [Abstract][Full Text] [Related]
2. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity. Wei Y; Zhang J; Feng X; Liu D J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389 [TBL] [Abstract][Full Text] [Related]
3. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Jiang H; Wang XB; Li CY; Li JS; Xu FJ; Mao C; Yang WT; Shen J Langmuir; 2011 Sep; 27(18):11575-81. PubMed ID: 21851101 [TBL] [Abstract][Full Text] [Related]
4. Preparation of hemocompatible cellulosic paper based on P(DMAPS)-functionalized surface. Lv W; Cai B; Song Y; Zhao H; Jiang X; Zhou X; Yu R; Mao C Colloids Surf B Biointerfaces; 2014 Apr; 116():537-43. PubMed ID: 24583257 [TBL] [Abstract][Full Text] [Related]
5. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Liu P; Chen Q; Yuan B; Chen M; Wu S; Lin S; Shen J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3865-74. PubMed ID: 23910289 [TBL] [Abstract][Full Text] [Related]
6. Zwitterionic hyperbranched polyester functionalized cardiovascular stent and its biocompatibility. Wang X; Miao J; Shao X; Mao C; Shen J J Colloid Interface Sci; 2014 Apr; 420():88-96. PubMed ID: 24559705 [TBL] [Abstract][Full Text] [Related]
7. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
8. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film. Liu H; Pan C; Zhou S; Li J; Huang N; Dong L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1175-82. PubMed ID: 27612815 [TBL] [Abstract][Full Text] [Related]
9. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249 [TBL] [Abstract][Full Text] [Related]
10. Blood compatibility of a new zwitterionic bare metal stent with hyperbranched polymer brushes. Wang X; Chen X; Xing L; Mao C; Yu H; Shen J J Mater Chem B; 2013 Oct; 1(38):5036-5044. PubMed ID: 32261094 [TBL] [Abstract][Full Text] [Related]
11. Functionalization of polycarbonate surfaces by grafting PEG and zwitterionic polymers with a multicomb structure. Yang J; Lv J; Behl M; Lendlein A; Yang D; Zhang L; Shi C; Guo J; Feng Y Macromol Biosci; 2013 Dec; 13(12):1681-8. PubMed ID: 24106003 [TBL] [Abstract][Full Text] [Related]
12. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260 [TBL] [Abstract][Full Text] [Related]
13. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Wang M; Yuan J; Huang X; Cai X; Li L; Shen J Colloids Surf B Biointerfaces; 2013 Mar; 103():52-8. PubMed ID: 23201719 [TBL] [Abstract][Full Text] [Related]
14. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents. Bayram C; Mizrak AK; Aktürk S; Kurşaklioğlu H; Iyisoy A; Ifran A; Denkbaş EB Biomed Mater; 2010 Oct; 5(5):055007. PubMed ID: 20844318 [TBL] [Abstract][Full Text] [Related]
15. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control. Jhong JF; Sin MC; Kung HH; Chinnathambi A; Alharbi SA; Chang Y J Biomater Sci Polym Ed; 2014; 25(14-15):1558-72. PubMed ID: 24894872 [TBL] [Abstract][Full Text] [Related]
16. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells. Ren T; Yu S; Mao Z; Gao C Biomaterials; 2015 Jul; 56():58-67. PubMed ID: 25934279 [TBL] [Abstract][Full Text] [Related]
17. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. Wang Y; Shen J; Yuan J J Colloid Interface Sci; 2016 Oct; 480():205-217. PubMed ID: 27442148 [TBL] [Abstract][Full Text] [Related]
18. Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer. Hou J; Shi Q; Stagnaro P; Ye W; Jin J; Conzatti L; Yin J Colloids Surf B Biointerfaces; 2013 Nov; 111():333-41. PubMed ID: 23838201 [TBL] [Abstract][Full Text] [Related]
19. The effect of substrate molecular mobility on surface induced immune complement activation and blood plasma coagulation. Berglin M; Andersson M; Sellborn A; Elwing H Biomaterials; 2004 Aug; 25(19):4581-90. PubMed ID: 15120503 [TBL] [Abstract][Full Text] [Related]