These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24262842)

  • 61. Dye removal of AR27 with enhanced degradation and power generation in a microbial fuel cell using bioanode of treated clinoptilolite-modified graphite felt.
    Kardi SN; Ibrahim N; Darzi GN; Rashid NAA; Villaseñor J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19444-19457. PubMed ID: 28580546
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioelectrochemical perchlorate reduction in a microbial fuel cell.
    Butler CS; Clauwaert P; Green SJ; Verstraete W; Nerenberg R
    Environ Sci Technol; 2010 Jun; 44(12):4685-91. PubMed ID: 20476736
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Decolorization of Congo Red by Phanerochaete chrysosporium: the role of biosorption and biodegradation.
    Bosco F; Mollea C; Ruggeri B
    Environ Technol; 2017 Oct; 38(20):2581-2588. PubMed ID: 27931174
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain.
    Chang JS; Lin YC
    Biotechnol Prog; 2000; 16(6):979-85. PubMed ID: 11101324
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source.
    Cui MH; Cui D; Gao L; Wang AJ; Cheng HY
    Water Res; 2016 Nov; 105():520-526. PubMed ID: 27668996
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system.
    Kong D; Liang B; Lee DJ; Wang A; Ren N
    J Environ Sci (China); 2014 Aug; 26(8):1689-97. PubMed ID: 25108725
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Decolorization of Congo Red with three-dimensional flow-by packed-bed electrodes.
    Wang CT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Feb; 38(2):399-413. PubMed ID: 12638704
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells.
    Lim SS; Yu EH; Daud WRW; Kim BH; Scott K
    Bioresour Technol; 2017 Aug; 238():313-324. PubMed ID: 28454006
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Azo dye decolorization by a laccase/mediator system in a membrane reactor: enzyme and mediator reusability.
    Mendoza L; Jonstrup M; Hatti-Kaul R; Mattiasson B
    Enzyme Microb Technol; 2011 Oct; 49(5):478-84. PubMed ID: 22112621
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell.
    Dai Q; Zhang S; Liu H; Huang J; Li L
    Bioelectrochemistry; 2020 Feb; 131():107349. PubMed ID: 31476657
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system.
    Cui MH; Cui D; Lee HS; Liang B; Wang AJ; Cheng HY
    Sci Rep; 2016 Apr; 6():25223. PubMed ID: 27121278
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Congo Red Decolorization and Detoxification by
    Asses N; Ayed L; Hkiri N; Hamdi M
    Biomed Res Int; 2018; 2018():3049686. PubMed ID: 30175122
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri.
    Chen BY; Wang YM; Ng IS
    Bioresour Technol; 2011 Jan; 102(2):1159-65. PubMed ID: 20932743
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The accelerating effect and mechanism of a newly functional bio-carrier modified by redox mediators for the azo dyes decolorization.
    Guo J; Kang L; Lian J; Yang J; Yan B; Li Z; Liu C; Yue L
    Biodegradation; 2010 Nov; 21(6):1049-56. PubMed ID: 20490625
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation.
    Cardenas-Robles A; Martinez E; Rendon-Alcantar I; Frontana C; Gonzalez-Gutierrez L
    Bioresour Technol; 2013 Jan; 127():37-43. PubMed ID: 23128299
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biological detoxification and decolorization enhancement of azo dye by introducing natural electron mediators in MFCs.
    Li T; Song HL; Xu H; Yang XL; Chen QL
    J Hazard Mater; 2021 Aug; 416():125864. PubMed ID: 34492812
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems.
    Li R; Li T; Wan Y; Zhang X; Liu X; Li R; Pu H; Gao T; Wang X; Zhou Q
    J Hazard Mater; 2022 Jan; 421():126740. PubMed ID: 34333409
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst.
    Kondru AK; Kumar P; Chand S
    J Hazard Mater; 2009 Jul; 166(1):342-7. PubMed ID: 19135790
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Recent advancements in azo dye decolorization in bio-electrochemical systems (BESs): Insights into decolorization mechanism and practical application.
    Cui MH; Liu WZ; Tang ZE; Cui D
    Water Res; 2021 Sep; 203():117512. PubMed ID: 34384951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.