BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24262896)

  • 1. Neuromodulation of the lumbar spinal locomotor circuit.
    AuYong N; Lu DC
    Neurosurg Clin N Am; 2014 Jan; 25(1):15-23. PubMed ID: 24262896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.
    Minassian K; Hofstoetter US; Danner SM; Mayr W; Bruce JA; McKay WB; Tansey KE
    Neurorehabil Neural Repair; 2016 Mar; 30(3):233-43. PubMed ID: 26089308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical stimulation and motor recovery.
    Young W
    Cell Transplant; 2015; 24(3):429-46. PubMed ID: 25646771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of sensory and supraspinal control of leg movement in people with chronic paraplegia: a case series.
    Possover M
    Arch Phys Med Rehabil; 2014 Apr; 95(4):610-4. PubMed ID: 24269993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury.
    Shah PK; Sureddi S; Alam M; Zhong H; Roy RR; Edgerton VR; Gerasimenko Y
    J Neurotrauma; 2016 Sep; 33(18):1709-23. PubMed ID: 26792233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity.
    Minassian K; Persy I; Rattay F; Pinter MM; Kern H; Dimitrijevic MR
    Hum Mov Sci; 2007 Apr; 26(2):275-95. PubMed ID: 17343947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidural electrical stimulation to facilitate locomotor recovery after spinal cord injury.
    Audet J; Lecomte CG
    J Neurophysiol; 2021 Nov; 126(5):1751-1755. PubMed ID: 34705588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion.
    Hurteau MF; Thibaudier Y; Dambreville C; Desaulniers C; Frigon A
    J Neurophysiol; 2015 Jan; 113(2):669-76. PubMed ID: 25339715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury.
    Tator CH; Minassian K; Mushahwar VK
    Handb Clin Neurol; 2012; 109():283-96. PubMed ID: 23098720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of locomotion after spinal cord injury: some facts and mechanisms.
    Rossignol S; Frigon A
    Annu Rev Neurosci; 2011; 34():413-40. PubMed ID: 21469957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation.
    Hofstoetter US; Knikou M; Guertin PA; Minassian K
    Curr Pharm Des; 2017; 23(12):1805-1820. PubMed ID: 27981912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous electrical spinal-cord stimulation in humans.
    Gerasimenko Y; Gorodnichev R; Moshonkina T; Sayenko D; Gad P; Reggie Edgerton V
    Ann Phys Rehabil Med; 2015 Sep; 58(4):225-231. PubMed ID: 26205686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.
    Jeffrey-Gauthier R; Piché M; Leblond H
    Neuroscience; 2017 Sep; 359():69-81. PubMed ID: 28716590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury.
    Yu P; Zhang W; Liu Y; Sheng C; So KF; Zhou L; Zhu H
    Int Rev Neurobiol; 2019; 147():199-217. PubMed ID: 31607355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans.
    Gerasimenko Y; Roy RR; Edgerton VR
    Exp Neurol; 2008 Feb; 209(2):417-25. PubMed ID: 17850791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional electrical stimulation post-spinal cord injury improves locomotion and increases afferent input into the central nervous system in rats.
    Beaumont E; Guevara E; Dubeau S; Lesage F; Nagai M; Popovic M
    J Spinal Cord Med; 2014 Jan; 37(1):93-100. PubMed ID: 24090649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
    Capogrosso M; Milekovic T; Borton D; Wagner F; Moraud EM; Mignardot JB; Buse N; Gandar J; Barraud Q; Xing D; Rey E; Duis S; Jianzhong Y; Ko WK; Li Q; Detemple P; Denison T; Micera S; Bezard E; Bloch J; Courtine G
    Nature; 2016 Nov; 539(7628):284-288. PubMed ID: 27830790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual spinal cord lesion paradigm to study spinal locomotor plasticity in the cat.
    Martinez M; Rossignol S
    Ann N Y Acad Sci; 2013 Mar; 1279():127-34. PubMed ID: 23531010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.