BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24262986)

  • 21. A cross-species analysis of microRNAs in the developing avian face.
    Powder KE; Ku YC; Brugmann SA; Veile RA; Renaud NA; Helms JA; Lovett M
    PLoS One; 2012; 7(4):e35111. PubMed ID: 22523571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tgfbeta3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest.
    Cheah FS; Winkler C; Jabs EW; Chong SS
    Mech Dev; 2010; 127(7-8):329-44. PubMed ID: 20406684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme.
    Holleville N; Matéos S; Bontoux M; Bollerot K; Monsoro-Burq AH
    Dev Biol; 2007 Apr; 304(2):860-74. PubMed ID: 17335796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal development in blue-breasted quail embryos.
    Nakamura Y; Nakane Y; Tsudzuki M
    Anim Sci J; 2019 Mar; 90(3):353-365. PubMed ID: 30654411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BRCA1 and BRCA2 tumor suppressors in neural crest cells are essential for craniofacial bone development.
    Kitami K; Kitami M; Kaku M; Wang B; Komatsu Y
    PLoS Genet; 2018 May; 14(5):e1007340. PubMed ID: 29718910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development.
    Li J; Cui Y; Xu J; Wang Q; Yang X; Li Y; Zhang X; Qiu M; Zhang Z; Zhang Z
    J Biol Chem; 2017 Sep; 292(38):15814-15825. PubMed ID: 28794157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of blastoderm cells to Japanese quail (Coturnix coturnix japonica)-Peking duck (Anas platyrhynchos) chimeras.
    Gao J; Yuan F; Tang X; Han H; Sha J; Yuan J; Shao Y; Jin X; Liu H; Rui L; Li Z
    Anim Sci J; 2011 Dec; 82(6):729-34. PubMed ID: 22111627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methyltransferase G9A Regulates Osteogenesis via Twist Gene Repression.
    Higashihori N; Lehnertz B; Sampaio A; Underhill TM; Rossi F; Richman JM
    J Dent Res; 2017 Sep; 96(10):1136-1144. PubMed ID: 28644763
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone.
    Dash S; Trainor PA
    Bone; 2020 Aug; 137():115409. PubMed ID: 32417535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CHD9 upregulates RUNX2 and has a potential role in skeletal evolution.
    Newton AH; Pask AJ
    BMC Mol Cell Biol; 2020 Apr; 21(1):27. PubMed ID: 32295522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of Drew Noden's work on our understanding of craniofacial musculoskeletal integration.
    Nödl MT; Tsai SL; Galloway JL
    Dev Dyn; 2022 Aug; 251(8):1250-1266. PubMed ID: 35338756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Successful xenogeneic transplantation in embryos: induction of tolerance by extrathymic chick tissue grafted into quail.
    Martin C; Ohki-Hamazaki H; Corbel C; Coltey M; Le Douarin NM
    Dev Immunol; 1991; 1(4):265-77. PubMed ID: 1840417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects.
    Maeno T; Moriishi T; Yoshida CA; Komori H; Kanatani N; Izumi S; Takaoka K; Komori T
    Bone; 2011 Oct; 49(4):673-82. PubMed ID: 21807129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis.
    Chava S; Chennakesavulu S; Gayatri BM; Reddy ABM
    Cell Death Dis; 2018 Jul; 9(7):754. PubMed ID: 29988028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shaping modern human skull through epigenetic, transcriptional and post-transcriptional regulation of the RUNX2 master bone gene.
    Di Pietro L; Barba M; Palacios D; Tiberio F; Prampolini C; Baranzini M; Parolini O; Arcovito A; Lattanzi W
    Sci Rep; 2021 Oct; 11(1):21316. PubMed ID: 34716352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of overexpression of Dlx2 on the migration, proliferation and osteogenic differentiation of cranial neural crest stem cells.
    Dai J; Kuang Y; Fang B; Gong H; Lu S; Mou Z; Sun H; Dong Y; Lu J; Zhang W; Zhang J; Wang Z; Wang X; Shen G
    Biomaterials; 2013 Mar; 34(8):1898-910. PubMed ID: 23246068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of the interaction between Runx2 and VDR, two transcription factors involved in osteoblastogenesis.
    Marcellini S; Bruna C; Henríquez JP; Albistur M; Reyes AE; Barriga EH; Henríquez B; Montecino M
    BMC Evol Biol; 2010 Mar; 10():78. PubMed ID: 20236534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Runx2 function in cells of neural crest origin during intramembranous ossification.
    Shirai Y; Kawabe K; Tosa I; Tsukamoto S; Yamada D; Takarada T
    Biochem Biophys Res Commun; 2019 Feb; 509(4):1028-1033. PubMed ID: 30660360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible roles of Runx1 and Sox9 in incipient intramembranous ossification.
    Yamashiro T; Wang XP; Li Z; Oya S; Aberg T; Fukunaga T; Kamioka H; Speck NA; Takano-Yamamoto T; Thesleff I
    J Bone Miner Res; 2004 Oct; 19(10):1671-7. PubMed ID: 15355562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-Enhancer-Associated Long Non-Coding RNA LINC01485 Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Regulating MiR-619-5p/RUNX2 Axis.
    Gu W; Jiang X; Wang W; Mujagond P; Liu J; Mai Z; Tang H; Li S; Xiao H; Zhao J
    Front Endocrinol (Lausanne); 2022; 13():846154. PubMed ID: 35663324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.