BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 24264057)

  • 1. The emerging role of p53 in exercise metabolism.
    Bartlett JD; Close GL; Drust B; Morton JP
    Sports Med; 2014 Mar; 44(3):303-9. PubMed ID: 24264057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMP-activated protein kinase is required for exercise-induced peroxisome proliferator-activated receptor co-activator 1 translocation to subsarcolemmal mitochondria in skeletal muscle.
    Smith BK; Mukai K; Lally JS; Maher AC; Gurd BJ; Heigenhauser GJ; Spriet LL; Holloway GP
    J Physiol; 2013 Mar; 591(6):1551-61. PubMed ID: 23297307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle.
    Saleem A; Adhihetty PJ; Hood DA
    Physiol Genomics; 2009 Mar; 37(1):58-66. PubMed ID: 19106183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle.
    Saleem A; Hood DA
    J Physiol; 2013 Jul; 591(14):3625-36. PubMed ID: 23690562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis.
    Bartlett JD; Louhelainen J; Iqbal Z; Cochran AJ; Gibala MJ; Gregson W; Close GL; Drust B; Morton JP
    Am J Physiol Regul Integr Comp Physiol; 2013 Mar; 304(6):R450-8. PubMed ID: 23364526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content.
    Park JY; Wang PY; Matsumoto T; Sung HJ; Ma W; Choi JW; Anderson SA; Leary SC; Balaban RS; Kang JG; Hwang PM
    Circ Res; 2009 Sep; 105(7):705-12, 11 p following 712. PubMed ID: 19696408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic review of p53 regulation of oxidative stress in skeletal muscle.
    Beyfuss K; Hood DA
    Redox Rep; 2018 Dec; 23(1):100-117. PubMed ID: 29298131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise.
    Saleem A; Carter HN; Hood DA
    Am J Physiol Cell Physiol; 2014 Feb; 306(3):C241-9. PubMed ID: 24284795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise.
    Marcinko K; Steinberg GR
    Exp Physiol; 2014 Dec; 99(12):1581-5. PubMed ID: 25261498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The guardian of the genome p53 regulates exercise-induced mitochondrial plasticity beyond organelle biogenesis.
    Smiles WJ; Camera DM
    Acta Physiol (Oxf); 2018 Mar; 222(3):. PubMed ID: 29178461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.
    Little JP; Safdar A; Wilkin GP; Tarnopolsky MA; Gibala MJ
    J Physiol; 2010 Mar; 588(Pt 6):1011-22. PubMed ID: 20100740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations.
    Schlagowski AI; Singh F; Charles AL; Gali Ramamoorthy T; Favret F; Piquard F; Geny B; Zoll J
    J Appl Physiol (1985); 2014 Feb; 116(4):364-75. PubMed ID: 24336883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ramping up the signal: promoting endurance training adaptation in skeletal muscle by nutritional manipulation.
    Hawley JA; Morton JP
    Clin Exp Pharmacol Physiol; 2014 Aug; 41(8):608-13. PubMed ID: 25142094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training-induced alterations of skeletal muscle mitochondrial biogenesis proteins in non-insulin-dependent type 2 diabetic men.
    Chung N; Kreutz T; Schiffer T; Opitz D; Hermann R; Gehlert S; Bloch W; Brixius K; Brinkmann C
    Can J Physiol Pharmacol; 2012 Dec; 90(12):1634-41. PubMed ID: 23210442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle.
    Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ
    FASEB J; 2016 Feb; 30(2):959-70. PubMed ID: 26572168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle.
    Adhihetty PJ; Uguccioni G; Leick L; Hidalgo J; Pilegaard H; Hood DA
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C217-25. PubMed ID: 19439529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise.
    Philp A; Chen A; Lan D; Meyer GA; Murphy AN; Knapp AE; Olfert IM; McCurdy CE; Marcotte GR; Hogan MC; Baar K; Schenk S
    J Biol Chem; 2011 Sep; 286(35):30561-30570. PubMed ID: 21757760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of p53 on mitochondrial morphology, import, and assembly in skeletal muscle.
    Saleem A; Iqbal S; Zhang Y; Hood DA
    Am J Physiol Cell Physiol; 2015 Feb; 308(4):C319-29. PubMed ID: 25472962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α.
    Kang C; Chung E; Diffee G; Ji LL
    Exp Gerontol; 2013 Nov; 48(11):1343-50. PubMed ID: 23994518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.