BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 24264057)

  • 21. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle.
    Geng J; Wei M; Yuan X; Liu Z; Wang X; Zhang D; Luo L; Wu J; Guo W; Qin ZH
    FASEB J; 2019 May; 33(5):6082-6098. PubMed ID: 30726106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.
    Safdar A; Khrapko K; Flynn JM; Saleem A; De Lisio M; Johnston AP; Kratysberg Y; Samjoo IA; Kitaoka Y; Ogborn DI; Little JP; Raha S; Parise G; Akhtar M; Hettinga BP; Rowe GC; Arany Z; Prolla TA; Tarnopolsky MA
    Skelet Muscle; 2016; 6():7. PubMed ID: 26834962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats.
    Qi Z; He J; Zhang Y; Shao Y; Ding S
    Free Radic Biol Med; 2011 Apr; 50(7):794-800. PubMed ID: 21185935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1.
    Tanner CB; Madsen SR; Hallowell DM; Goring DM; Moore TM; Hardman SE; Heninger MR; Atwood DR; Thomson DM
    Am J Physiol Endocrinol Metab; 2013 Oct; 305(8):E1018-29. PubMed ID: 23982155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.
    Chen CCW; Erlich AT; Hood DA
    Skelet Muscle; 2018 Mar; 8(1):10. PubMed ID: 29549884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
    FASEB J; 2005 Jul; 19(9):1146-8. PubMed ID: 15878932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise.
    Joseph AM; Pilegaard H; Litvintsev A; Leick L; Hood DA
    Essays Biochem; 2006; 42():13-29. PubMed ID: 17144877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle.
    Lesmana R; Sinha RA; Singh BK; Zhou J; Ohba K; Wu Y; Yau WW; Bay BH; Yen PM
    Endocrinology; 2016 Jan; 157(1):23-38. PubMed ID: 26562261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle.
    Vainshtein A; Tryon LD; Pauly M; Hood DA
    Am J Physiol Cell Physiol; 2015 May; 308(9):C710-9. PubMed ID: 25673772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle.
    Ihsan M; Markworth JF; Watson G; Choo HC; Govus A; Pham T; Hickey A; Cameron-Smith D; Abbiss CR
    Am J Physiol Regul Integr Comp Physiol; 2015 Aug; 309(3):R286-94. PubMed ID: 26041108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner.
    Gurd BJ; Holloway GP; Yoshida Y; Bonen A
    Metabolism; 2012 May; 61(5):733-41. PubMed ID: 22078938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis.
    Ljubicic V; Adhihetty PJ; Hood DA
    J Appl Physiol (1985); 2004 Sep; 97(3):976-83. PubMed ID: 15145919
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial dysfunction in skeletal muscle of fukutin-deficient mice is resistant to exercise- and 5-aminoimidazole-4-carboxamide ribonucleotide-induced rescue.
    Southern WM; Nichenko AS; Qualls AE; Portman K; Gidon A; Beedle AM; Call JA
    Exp Physiol; 2020 Oct; 105(10):1767-1777. PubMed ID: 32833332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive.
    Kang C; O'Moore KM; Dickman JR; Ji LL
    Free Radic Biol Med; 2009 Nov; 47(10):1394-400. PubMed ID: 19686839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle.
    Egan B; Carson BP; Garcia-Roves PM; Chibalin AV; Sarsfield FM; Barron N; McCaffrey N; Moyna NM; Zierath JR; O'Gorman DJ
    J Physiol; 2010 May; 588(Pt 10):1779-90. PubMed ID: 20308248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis.
    Granata C; Jamnick NA; Bishop DJ
    Sports Med; 2018 Jul; 48(7):1541-1559. PubMed ID: 29675670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity.
    O'Neill HM; Holloway GP; Steinberg GR
    Mol Cell Endocrinol; 2013 Feb; 366(2):135-51. PubMed ID: 22750049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle.
    Fell JM; Hearris MA; Ellis DG; Moran JEP; Jevons EFP; Owens DJ; Strauss JA; Cocks M; Louis JB; Shepherd SO; Morton JP
    J Physiol; 2021 Jun; 599(11):2823-2849. PubMed ID: 33772787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle.
    Psilander N; Frank P; Flockhart M; Sahlin K
    Eur J Appl Physiol; 2013 Apr; 113(4):951-63. PubMed ID: 23053125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.