These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2426406)

  • 1. Differences in anionic dependence of the synaptic efflux of D-aspartic acid and gamma-aminobutyric acid.
    Naalsund LU; Fonnum F
    J Neurochem; 1986 Sep; 47(3):687-90. PubMed ID: 2426406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscimol potentiation of acidic amino acid release from cerebellar synaptosomes is chloride dependent.
    Gallo V; Aloisi F; Levi G
    J Neurochem; 1983 Apr; 40(4):939-45. PubMed ID: 6834053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of aspartate and glutamate caused by chloride reduction in synaptosomal incubation media.
    Hardy JA; Boakes RJ; Thomas DJ; Kidd AM; Edwardson JA; Virmani M; Turner J; Dodd PR
    J Neurochem; 1984 Mar; 42(3):875-7. PubMed ID: 6141228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of D-[3H]aspartate and [14C]GABA in rat hippocampus slices: effects of fatty acid-free bovine serum albumin and Ca2+ withdrawal.
    Minc-Golomb D; Eimerl S; Levy Y; Schramm M
    Brain Res; 1988 Aug; 457(2):205-11. PubMed ID: 3219550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of gamma-aminobutyric acid by brain tissue preparations: a reevaluation.
    Wood JD; Sidhu HS
    J Neurochem; 1986 Mar; 46(3):739-44. PubMed ID: 3950605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective inhibition of synaptosomal gamma-aminobutyric acid uptake by triethyllead: role of energy transduction and chloride ion.
    Seidman BC; Verity MA
    J Neurochem; 1987 Apr; 48(4):1142-9. PubMed ID: 2880929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters.
    Poli A; Contestabile A; Migani P; Rossi L; Rondelli C; Virgili M; Bissoli R; Barnabei O
    J Neurochem; 1985 Dec; 45(6):1677-86. PubMed ID: 2865332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonia-induced release of neurotransmitters from rat brain synaptosomes: differences between the effects on amines and amino acids.
    Erecińska M; Pastuszko A; Wilson DF; Nelson D
    J Neurochem; 1987 Oct; 49(4):1258-65. PubMed ID: 2887636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efflux of putative transmitters from superfused rat brain slices induced by low chloride ion concentrations.
    Turner JD; Boakes RJ; Hardy JA; Virmani MA
    J Neurochem; 1987 Apr; 48(4):1060-8. PubMed ID: 2880928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate and gamma-aminobutyric acid content and release of synaptosomes from temporal lobe epilepsy patients.
    Hoogland G; Hens JJ; De Wit M; van Veelen CW; van Huffelen AC; Gispen WH; de Graan PN
    J Neurosci Res; 2000 Jun; 60(5):686-95. PubMed ID: 10820440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptosomal transport: a chloride dependence for choline, GABA, glycine and several other compounds.
    Kuhar MJ; Zarbin MA
    J Neurochem; 1978 Jul; 31(1):251-6. PubMed ID: 27588
    [No Abstract]   [Full Text] [Related]  

  • 12. Is the concentration of gamma-aminobutyric acid in the nerve terminal regulated via product inhibition of glutamic acid decarboxylase?
    Lidén E; Karlsson L; Sellström A
    Neurochem Res; 1987 May; 12(5):489-93. PubMed ID: 3587508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices.
    Cunningham J; Neal MJ
    Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium and potassium ions and accumulation of labelled D-aspartate and GABA in crude synaptosomal fraction from rat cerebral cortex.
    Takagaki G
    J Neurochem; 1978 Jan; 30(1):47-56. PubMed ID: 621521
    [No Abstract]   [Full Text] [Related]  

  • 15. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
    Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G
    J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K+ efflux pathways and neurotransmitter release associated to hippocampal ischemia: effects of glucose and of K+ channel blockers.
    Schaeffer P; Lazdunski M
    Brain Res; 1991 Jan; 539(1):155-8. PubMed ID: 1707738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study and partial characterization of multi-uptake systems for gamma-aminobutyric acid.
    Wood JD; Sidhu HS
    J Neurochem; 1987 Oct; 49(4):1202-8. PubMed ID: 2887634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools.
    Levi G; Gallo V
    J Neurochem; 1981 Jul; 37(1):22-31. PubMed ID: 6114134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of kainic acid in rat brain synaptosomes: the involvement of calcium.
    Pastuszko A; Wilson DF; Erecińska M
    J Neurochem; 1984 Sep; 43(3):747-54. PubMed ID: 6747632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the relationship between Ca2+ efflux from mitochondria and the release of amino acid neurotransmitters.
    Sandoval ME
    Brain Res; 1980 Jan; 181(2):357-67. PubMed ID: 7350970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.