These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24264269)

  • 21. New insights into trophic aerenchyma formation strategy in maize (Zea mays L.) organs during sulfate deprivation.
    Maniou F; Chorianopoulou SN; Bouranis DL
    Front Plant Sci; 2014; 5():581. PubMed ID: 25404934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunoprofiling of Cell Wall Carbohydrate Modifications During Flooding-Induced Aerenchyma Formation in Fabaceae Roots.
    Pegg T; Edelmann RR; Gladish DK
    Front Plant Sci; 2019; 10():1805. PubMed ID: 32117353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport.
    Drew MC; Saglio PH; Pradet A
    Planta; 1985 Jul; 165(1):51-8. PubMed ID: 24240957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of lysigenous aerenchyma formation under abiotic stress.
    Yamauchi T; Nakazono M
    Trends Plant Sci; 2022 Jan; 27(1):13-15. PubMed ID: 34810105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical Air Spaces (Aerenchyma) in Roots of Corn Subjected to Oxygen Stress: STRUCTURE AND INFLUENCE ON UPTAKE AND TRANSLOCATION OF RUBIDIUM IONS.
    Drew MC; Chamel A; Garrec JP; Fourcy A
    Plant Physiol; 1980 Mar; 65(3):506-11. PubMed ID: 16661224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Ethylene-induced activation of xylanase in adventitious roots of maize as a response to the stress effect of root submersion].
    Bragina TV; Martinovich LI; Rodionova NA; Bezborodov AM; Grineva GM
    Prikl Biokhim Mikrobiol; 2001; 37(6):722-5. PubMed ID: 11771328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize.
    Pedersen O; Nakayama Y; Yasue H; Kurokawa Y; Takahashi H; Heidi Floytrup A; Omori F; Mano Y; David Colmer T; Nakazono M
    New Phytol; 2021 Jan; 229(1):94-105. PubMed ID: 31990995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma.
    Saab IN; Sachs MM
    Plant Physiol; 1996 Sep; 112(1):385-91. PubMed ID: 8819334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene.
    Visser EJ; Bögemann GM
    New Phytol; 2006; 171(2):305-14. PubMed ID: 16866938
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress.
    Gao C; Ding L; Li Y; Chen Y; Zhu J; Gu M; Li Y; Xu G; Shen Q; Guo S
    Funct Plant Biol; 2017 Apr; 44(4):430-442. PubMed ID: 32480576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers.
    Clarkson DT; Robards AW; Stephens JE; Stark M
    Plant Cell Environ; 1987 Jan; 10(1):83-93. PubMed ID: 28692152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation.
    Siyiannis VF; Protonotarios VE; Zechmann B; Chorianopoulou SN; Müller M; Hawkesford MJ; Bouranis DL
    Protoplasma; 2012 Jul; 249(3):671-86. PubMed ID: 21870204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice.
    Lin C; Ogorek LLP; Pedersen O; Sauter M
    J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice.
    Yamauchi T; Fukazawa A; Nakazono M
    Plant Signal Behav; 2017 Nov; 12(11):e1388976. PubMed ID: 29035627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress.
    Basu S; Kumari S; Kumar A; Shahid R; Kumar S; Kumar G
    Physiol Plant; 2021 Jun; 172(2):963-975. PubMed ID: 33826753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots.
    Tavares EQP; Grandis A; Lembke CG; Souza GM; Purgatto E; De Souza AP; Buckeridge MS
    Plant Signal Behav; 2018 Mar; 13(3):e1422464. PubMed ID: 29286887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmed cell death and aerenchyma formation in roots.
    Drew MC; He CJ; Morgan PW
    Trends Plant Sci; 2000 Mar; 5(3):123-7. PubMed ID: 10707078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlorophyll development in mature lysigenous and schizogenous root aerenchymas provides evidence of continuing cortical cell viability.
    Armstrong J; Armstrong W
    New Phytol; 1994 Mar; 126(3):493-497. PubMed ID: 33874471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia.
    Geisler-Lee J; Caldwell C; Gallie DR
    J Exp Bot; 2010 Mar; 61(3):857-71. PubMed ID: 20008461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethylene Biosynthesis during Aerenchyma Formation in Roots of Maize Subjected to Mechanical Impedance and Hypoxia.
    He C; Finlayson SA; Drew MC; Jordan WR; Morgan PW
    Plant Physiol; 1996 Dec; 112(4):1679-1685. PubMed ID: 12226471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.