These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 24264269)
41. Comparative Physiological, Biochemical, and Genetic Responses to Prolonged Waterlogging Stress in Okra and Maize Given Exogenous Ethylene Priming. Vwioko E; Adinkwu O; El-Esawi MA Front Physiol; 2017; 8():632. PubMed ID: 28993735 [TBL] [Abstract][Full Text] [Related]
42. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444 [TBL] [Abstract][Full Text] [Related]
43. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. De Simone O; Haase K; Müller E; Junk WJ; Gonsior G; Schmidt W Funct Plant Biol; 2002 Aug; 29(9):1025-1035. PubMed ID: 32689553 [TBL] [Abstract][Full Text] [Related]
44. Physiological roles for aerenchyma in phosphorus-stressed roots. Fan M; Zhu J; Richards C; Brown KM; Lynch JP Funct Plant Biol; 2003 Jul; 30(5):493-506. PubMed ID: 32689034 [TBL] [Abstract][Full Text] [Related]
45. Aerenchyma formation and porosity in root of a mangrove plant, Sonneratia alba (Lythraceae). Purnobasuki H; Suzuki M J Plant Res; 2004 Dec; 117(6):465-72. PubMed ID: 15538653 [TBL] [Abstract][Full Text] [Related]
46. Metabolic evidence for stelar anoxia in maize roots exposed to low o(2) concentrations. Thomson CJ; Greenway H Plant Physiol; 1991 Aug; 96(4):1294-301. PubMed ID: 16668333 [TBL] [Abstract][Full Text] [Related]
47. Changes in cell wall ultrastructure induced by sudden flooding at 25{degrees}C in Pisum sativum (Fabaceae) primary roots. Sarkar P; Niki T; Gladish DK Am J Bot; 2008 Jul; 95(7):782-92. PubMed ID: 21632404 [TBL] [Abstract][Full Text] [Related]
48. [Effect of hydrostatic pressure on structural organization of the maize root cells]. Abdrakhimov FA; Suslov MA; Anisimov AV Tsitologiia; 2013; 55(6):414-20. PubMed ID: 25509108 [TBL] [Abstract][Full Text] [Related]
49. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.). Hu LY; Li D; Sun K; Cao W; Fu WQ; Zhang W; Dai CC Plant Physiol Biochem; 2018 Sep; 130():367-376. PubMed ID: 30055345 [TBL] [Abstract][Full Text] [Related]
50. Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Xu QT; Yang L; Zhou ZQ; Mei FZ; Qu LH; Zhou GS Planta; 2013 Nov; 238(5):969-82. PubMed ID: 23975011 [TBL] [Abstract][Full Text] [Related]
51. Effects of glucose starvation on mitochondrial subpopulations in the meristematic and submeristematic regions of maize root. Couée I; Jan M; Carde JP; Brouquisse R; Raymond P; Pradet A Plant Physiol; 1992 Dec; 100(4):1891-900. PubMed ID: 16653214 [TBL] [Abstract][Full Text] [Related]
52. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Rubinigg M; Stulen I; Elzenga JTM; Colmer TD Funct Plant Biol; 2002 Jan; 29(12):1475-1481. PubMed ID: 32688747 [TBL] [Abstract][Full Text] [Related]
53. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Abiko T; Obara M Plant Sci; 2014 Feb; 215-216():76-83. PubMed ID: 24388517 [TBL] [Abstract][Full Text] [Related]
54. Aerenchyma tissue development and gas-pathway structure in root of Avicennia marina (Forsk.) Vierh. Purnobasuki H; Suzuki M J Plant Res; 2005 Aug; 118(4):285-94. PubMed ID: 16059658 [TBL] [Abstract][Full Text] [Related]
55. Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Garthwaite AJ; Bothmer RV; Colmer TD Funct Plant Biol; 2003 Sep; 30(8):875-889. PubMed ID: 32689072 [TBL] [Abstract][Full Text] [Related]
56. Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum 'Park'. Aschi-Smiti S; Chaibi W; Brouquisse R; Ricard B; Saglio P Ann Bot; 2003 Jan; 91 Spec No(2):195-204. PubMed ID: 12509340 [TBL] [Abstract][Full Text] [Related]
57. Cortical development in roots of the aquatic plant Pontederia cordata (Pontederiaceae). Seago JL; Peterson CA; Enstone DE Am J Bot; 2000 Aug; 87(8):1116-27. PubMed ID: 10947996 [TBL] [Abstract][Full Text] [Related]
58. Cell wall degradation and the dynamic changes of Ca2+ and related enzymes in the developing aerenchyma of wheat (Triticum aestivum L.) under waterlogging. Xu QT; Fan HY; Jiang Z; Zhou ZQ; Yang L; Mei FZ; Qu LH Acta Biol Hung; 2013 Sep; 64(3):328-40. PubMed ID: 24013894 [TBL] [Abstract][Full Text] [Related]
59. Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp. Yin D; Chen S; Chen F; Jiang J Mol Biol Rep; 2013 Jul; 40(7):4581-90. PubMed ID: 23645034 [TBL] [Abstract][Full Text] [Related]
60. Programmed Cell Death and Aerenchyma Formation in Water-Logged Sunflower Stems and Its Promotion by Ethylene and ROS. Ni XL; Gui MY; Tan LL; Zhu Q; Liu WZ; Li CX Front Plant Sci; 2018; 9():1928. PubMed ID: 30687344 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]