BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24264643)

  • 1. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.
    Haandbæk N; Bürgel SC; Heer F; Hierlemann A
    Lab Chip; 2014 Jan; 14(2):369-77. PubMed ID: 24264643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lab-On-A-Chip Device for Yeast Cell Characterization in Low-Conductivity Media Combining Cytometry and Bio-Impedance.
    Claudel J; Alves De Araujo AL; Nadi M; Kourtiche D
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
    Gawad S; Cheung K; Seger U; Bertsch A; Renaud P
    Lab Chip; 2004 Jun; 4(3):241-51. PubMed ID: 15159786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation.
    Cheung K; Gawad S; Renaud P
    Cytometry A; 2005 Jun; 65(2):124-32. PubMed ID: 15825181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free virus identification and characterization using electrochemical impedance spectroscopy.
    Poenar DP; Iliescu C; Boulaire J; Yu H
    Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical cell counting process characterization in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sheath-less combined optical and impedance micro-cytometer.
    Spencer D; Elliott G; Morgan H
    Lab Chip; 2014 Aug; 14(16):3064-73. PubMed ID: 24964908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T; Holmes D; Gawad S; Green NG; Morgan H
    Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic impedance flow cytometer for identification of differentiation state of stem cells.
    Song H; Wang Y; Rosano JM; Prabhakarpandian B; Garson C; Pant K; Lai E
    Lab Chip; 2013 Jun; 13(12):2300-10. PubMed ID: 23636706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An impedance-based flow microcytometer for single cell morphology discrimination.
    Shaker M; Colella L; Caselli F; Bisegna P; Renaud P
    Lab Chip; 2014 Jul; 14(14):2548-55. PubMed ID: 24874178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device for cell capture and impedance measurement.
    Jang LS; Wang MH
    Biomed Microdevices; 2007 Oct; 9(5):737-43. PubMed ID: 17508285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.
    Simon P; Frankowski M; Bock N; Neukammer J
    Lab Chip; 2016 Jun; 16(12):2326-38. PubMed ID: 27229300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic impedance cytometer for platelet analysis.
    Evander M; Ricco AJ; Morser J; Kovacs GT; Leung LL; Giovangrandi L
    Lab Chip; 2013 Feb; 13(4):722-9. PubMed ID: 23282651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.