These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 24264910)
1. Watercress and amphipods Potential chemical defense in a spring stream macrophyte. Newman RM; Kerfoot WC; Hanscom Z J Chem Ecol; 1990 Jan; 16(1):245-59. PubMed ID: 24264910 [TBL] [Abstract][Full Text] [Related]
2. The watercress glucosinolate-myrosinase system: a feeding deterrent to caddisflies, snails and amphipods. Newman RM; Hanscom Z; Kerfoot WC Oecologia; 1992 Oct; 92(1):1-7. PubMed ID: 28311805 [TBL] [Abstract][Full Text] [Related]
3. De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.). Jeon J; Bong SJ; Park JS; Park YK; Arasu MV; Al-Dhabi NA; Park SU BMC Genomics; 2017 May; 18(1):401. PubMed ID: 28535746 [TBL] [Abstract][Full Text] [Related]
4. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). Kopsell DA; Barickman TC; Sams CE; McElroy JS J Agric Food Chem; 2007 Dec; 55(26):10628-34. PubMed ID: 18052091 [TBL] [Abstract][Full Text] [Related]
5. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae. Friedrichs J; Schweiger R; Geisler S; Mix A; Wittstock U; Müller C Insect Biochem Mol Biol; 2020 Sep; 124():103431. PubMed ID: 32653632 [TBL] [Abstract][Full Text] [Related]
7. Making watercress ( Hibbert LE; Qian Y; Smith HK; Milner S; Katz E; Kliebenstein DJ; Taylor G Front Plant Sci; 2023; 14():1279823. PubMed ID: 38023842 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial activity and synergistic effect between watercress extracts, 2-phenylethyl isothiocyanate and antibiotics against 11 isolates of Escherichia coli from clinical and animal source. Freitas E; Aires A; de Santos Rosa EA; Saavedra MJ Lett Appl Microbiol; 2013 Oct; 57(4):266-73. PubMed ID: 23682789 [TBL] [Abstract][Full Text] [Related]
9. Cooking has the potential to decrease the antitumor effect of fresh Betong watercress. Aksornthong C; Prutipanlai S; Ruangrut P; Janchawee B J Food Biochem; 2019 Apr; 43(4):e12783. PubMed ID: 31353578 [TBL] [Abstract][Full Text] [Related]
10. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
11. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R.Br.) leaves. Palaniswamy UR; McAvoy RJ; Bible BB; Stuart JD J Agric Food Chem; 2003 Aug; 51(18):5504-9. PubMed ID: 12926905 [TBL] [Abstract][Full Text] [Related]
12. Effects of Drying Methods on the Phytochemical Contents, Antioxidant Properties, and Anti-Diabetic Activity of Kijkuokool P; Stepanov I; Ounjaijean S; Koonyosying P; Rerkasem K; Chuljerm H; Parklak W; Kulprachakarn K Life (Basel); 2024 Sep; 14(9):. PubMed ID: 39337986 [No Abstract] [Full Text] [Related]
13. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). Engelen-Eigles G; Holden G; Cohen JD; Gardner G J Agric Food Chem; 2006 Jan; 54(2):328-34. PubMed ID: 16417287 [TBL] [Abstract][Full Text] [Related]
14. Specific glucosinolate analysis reveals variable levels of epimeric glucobarbarins, dietary precursors of 5-phenyloxazolidine-2-thiones, in watercress types with contrasting chromosome numbers. Agerbirk N; Olsen CE; Cipollini D; Ørgaard M; Linde-Laursen I; Chew FS J Agric Food Chem; 2014 Oct; 62(39):9586-96. PubMed ID: 25226408 [TBL] [Abstract][Full Text] [Related]
15. Volatile emissions of watercress (Nasturtium officinale) leaves and passion fruit (Passiflora edulis) seeds against Meloidogyne incognita. Silva MF; Campos VP; Barros AF; Terra WC; Pedroso MP; Gomes VA; Ribeiro CR; Silva FJ Pest Manag Sci; 2020 Apr; 76(4):1413-1421. PubMed ID: 31625270 [TBL] [Abstract][Full Text] [Related]
16. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Yan C; Du J; Gao L; Li Y; Hou X Gene; 2019 May; 699():24-36. PubMed ID: 30849538 [TBL] [Abstract][Full Text] [Related]
17. Use of peroxyacetic acid as green chemical on yield and sensorial quality in Watercress (Nasturtium officinale R. Br.) under soilless culture. Carrasco G; Moggia C; Osses IJ; Alvaro JE; Urrestarazu M Int J Mol Sci; 2011; 12(12):9463-70. PubMed ID: 22272143 [TBL] [Abstract][Full Text] [Related]
18. An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes. Park NI; Kim JK; Park WT; Cho JW; Lim YP; Park SU Mol Biol Rep; 2011 Nov; 38(8):4947-53. PubMed ID: 21161399 [TBL] [Abstract][Full Text] [Related]
19. Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Giallourou N; Oruna-Concha MJ; Harbourne N Food Chem; 2016 Dec; 212():411-9. PubMed ID: 27374550 [TBL] [Abstract][Full Text] [Related]
20. Acute and sub-acute oral toxicity studies of standardized extract of Nasturtium officinale in Wistar rats. Clemente M; Miguel MD; Felipe KB; Gribner C; Moura PF; Rigoni AGR; Fernandes LC; Carvalho JLS; Hartmann I; Piltz MT; Henneberg R; Montrucchio DP; Miguel OG Regul Toxicol Pharmacol; 2019 Nov; 108():104443. PubMed ID: 31437473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]