These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24265022)

  • 1. Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration.
    Zheleznyak L; Jung H; Yoon G
    Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):70-7. PubMed ID: 24265022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified monovision with spherical aberration to improve presbyopic through-focus visual performance.
    Zheleznyak L; Sabesan R; Oh JS; MacRae S; Yoon G
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3157-65. PubMed ID: 23557742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of spherical aberration and small-pupil profiles in improving depth of focus for presbyopic corrections.
    Hickenbotham A; Tiruveedhula P; Roorda A
    J Cataract Refract Surg; 2012 Dec; 38(12):2071-9. PubMed ID: 23031641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study.
    Xu R; Bradley A; Thibos LN
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):444-55. PubMed ID: 23683093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-pupil versus multifocal strategies for expanding depth of focus of presbyopic eyes.
    Xu R; Wang H; Jaskulski M; Kollbaum P; Bradley A
    J Cataract Refract Surg; 2019 May; 45(5):647-655. PubMed ID: 30935738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated prototype of posterior chamber phakic intraocular lens for presbyopia correction.
    Pérez-Vives C; Ferrer-Blasco T; Cerviño-Expósito A; Madrid-Costa D; Montés-Micó R
    J Cataract Refract Surg; 2015 Oct; 41(10):2266-73. PubMed ID: 26703304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential use of cubic phase masks for extending the range of clear vision in presbyopes: initial calculation and simulation studies.
    Arines J; Almaguer C; Acosta E
    Ophthalmic Physiol Opt; 2017 Mar; 37(2):141-150. PubMed ID: 28105741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Through-focus performance with multifocal contact lenses: effect of binocularity, pupil diameter and inherent ocular aberrations.
    Plainis S; Ntzilepis G; Atchison DA; Charman WN
    Ophthalmic Physiol Opt; 2013 Jan; 33(1):42-50. PubMed ID: 23199097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system.
    Zheleznyak L; Kim MJ; MacRae S; Yoon G
    J Cataract Refract Surg; 2012 Oct; 38(10):1724-33. PubMed ID: 22902188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended depth of focus contact lenses vs. two commercial multifocals: Part 1. Optical performance evaluation via computed through-focus retinal image quality metrics.
    Bakaraju RC; Ehrmann K; Ho A
    J Optom; 2018; 11(1):10-20. PubMed ID: 28606456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between induced spherical aberration and depth of focus after hyperopic LASIK in presbyopic patients.
    Leray B; Cassagne M; Soler V; Villegas EA; Triozon C; Perez GM; Letsch J; Chapotot E; Artal P; Malecaze F
    Ophthalmology; 2015 Feb; 122(2):233-43. PubMed ID: 25444348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spherical Aberration Customization to Extend the Depth of Focus With a Clinical Adaptive Optics Visual Simulator.
    Hervella L; Villegas EA; Robles C; Artal P
    J Refract Surg; 2020 Apr; 36(4):223-229. PubMed ID: 32267952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific determination of change in ocular spherical aberration to improve near and intermediate visual acuity of presbyopic eyes.
    Shetty N; Kochar S; Paritekar P; Artal P; Shetty R; Nuijts RMMA; Webers CAB; Sinha Roy A
    J Biophotonics; 2019 Apr; 12(4):e201800259. PubMed ID: 30381915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of aberrations, diffraction, and quantal fluctuations determine the impact of pupil size on visual quality.
    Xu R; Wang H; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 2017 Apr; 34(4):481-492. PubMed ID: 28375317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual impact of Zernike and Seidel forms of monochromatic aberrations.
    Cheng X; Bradley A; Ravikumar S; Thibos LN
    Optom Vis Sci; 2010 May; 87(5):300-12. PubMed ID: 20351600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting through-focus visual acuity with the eye's natural aberrations.
    Kingston AC; Cox IG
    Optom Vis Sci; 2013 Oct; 90(10):1111-8. PubMed ID: 24013796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the effects of secondary spherical aberration on refractive error, image quality and depth of focus.
    Xu R; Bradley A; López Gil N; Thibos LN
    Ophthalmic Physiol Opt; 2015 Jan; 35(1):28-38. PubMed ID: 25532544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a Clinical Aberrometer Using Pyramidal Wavefront Sensing.
    Singh NK; Jaskulski M; Ramasubramanian V; Meyer D; Reed O; Rickert ME; Bradley A; Kollbaum PS
    Optom Vis Sci; 2019 Oct; 96(10):733-744. PubMed ID: 31592956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of age, decentration, aberrations and pupil size on subjective image quality with concentric bifocal optics.
    Rio D; Woog K; Legras R
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):411-20. PubMed ID: 27196105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Target Luminance on Optimum Pupil Diameter for Presbyopic Eyes.
    Xu R; Thibos L; Bradley A
    Optom Vis Sci; 2016 Nov; 93(11):1409-1419. PubMed ID: 27560851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.