BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 24265453)

  • 41. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orexin A modulates neuronal activity of the rodent suprachiasmatic nucleus in vitro.
    Klisch C; Inyushkin A; Mordel J; Karnas D; Pévet P; Meissl H
    Eur J Neurosci; 2009 Jul; 30(1):65-75. PubMed ID: 19519637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus.
    Mistlberger RE
    Brain Res Brain Res Rev; 2005 Nov; 49(3):429-54. PubMed ID: 16269313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sleep states alter activity of suprachiasmatic nucleus neurons.
    Deboer T; Vansteensel MJ; Détári L; Meijer JH
    Nat Neurosci; 2003 Oct; 6(10):1086-90. PubMed ID: 12958601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diurnal and seasonal rhythms of neuronal activity in the suprachiasmatic nucleus of humans.
    Hofman MA; Swaab DF
    J Biol Rhythms; 1993; 8(4):283-95. PubMed ID: 8032088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the role of calcium and potassium currents in circadian modulation of firing rate in rat suprachiasmatic nucleus neurons: multielectrode dish analysis.
    Kononenko NI; Honma S; Dudek FE; Honma K
    Neurosci Res; 2008 Sep; 62(1):51-7. PubMed ID: 18602427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses.
    Mendoza J; Pévet P; Challet E
    J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.
    Meijer JH; Michel S; Vanderleest HT; Rohling JH
    Eur J Neurosci; 2010 Dec; 32(12):2143-51. PubMed ID: 21143668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Processing of daily and seasonal light information in the mammalian circadian clock.
    Meijer JH; Michel S; Vansteensel MJ
    Gen Comp Endocrinol; 2007; 152(2-3):159-64. PubMed ID: 17324426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disruption of arcuate/paraventricular nucleus connections changes body energy balance and response to acute stress.
    Bell ME; Bhatnagar S; Akana SF; Choi S; Dallman MF
    J Neurosci; 2000 Sep; 20(17):6707-13. PubMed ID: 10964976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation, and response to light.
    Hundahl CA; Hannibal J; Fahrenkrug J; Dewilde S; Hay-Schmidt A
    J Comp Neurol; 2010 May; 518(9):1556-69. PubMed ID: 20187147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat.
    Kalsbeek A; Fliers E; Franke AN; Wortel J; Buijs RM
    Endocrinology; 2000 Oct; 141(10):3832-41. PubMed ID: 11014240
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Indirect projections from the suprachiasmatic nucleus to the ventrolateral preoptic nucleus: a dual tract-tracing study in rat.
    Deurveilher S; Burns J; Semba K
    Eur J Neurosci; 2002 Oct; 16(7):1195-213. PubMed ID: 12405980
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circadian rhythm generation in the cultured suprachiasmatic nucleus.
    Mirmiran M; Koster-Van Hoffen GC; Bos NP
    Brain Res Bull; 1995; 38(3):275-83. PubMed ID: 7496822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasticity of Light-induced Concurrent Glutamatergic and GABAergic Quantal Events in the Suprachiasmatic Nucleus.
    Cheng J; Huang X; Liang Y; Xue T; Wang L; Bao J
    J Biol Rhythms; 2018 Feb; 33(1):65-75. PubMed ID: 29432701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kisspeptin Neurons in the Arcuate Nucleus of the Hypothalamus Orchestrate Circadian Rhythms and Metabolism.
    Padilla SL; Perez JG; Ben-Hamo M; Johnson CW; Sanchez REA; Bussi IL; Palmiter RD; de la Iglesia HO
    Curr Biol; 2019 Feb; 29(4):592-604.e4. PubMed ID: 30744968
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm.
    Ono D; Honma KI; Honma S
    J Neurochem; 2021 Apr; 157(1):31-41. PubMed ID: 32198942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.