BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24265758)

  • 1. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes.
    Evans J; McCormick RF; Morishige D; Olson SN; Weers B; Hilley J; Klein P; Rooney W; Mullet J
    PLoS One; 2013; 8(11):e79192. PubMed ID: 24265758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice.
    Kim JS; Islam-Faridi MN; Klein PE; Stelly DM; Price HJ; Klein RR; Mullet JE
    Genetics; 2005 Dec; 171(4):1963-76. PubMed ID: 16143604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A first-generation haplotype map of maize.
    Gore MA; Chia JM; Elshire RJ; Sun Q; Ersoz ES; Hurwitz BL; Peiffer JA; McMullen MD; Grills GS; Ross-Ibarra J; Ware DH; Buckler ES
    Science; 2009 Nov; 326(5956):1115-7. PubMed ID: 19965431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production.
    Thurber CS; Ma JM; Higgins RH; Brown PJ
    Genome Biol; 2013 Jun; 14(6):R68. PubMed ID: 23803286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital genotyping of sorghum - a diverse plant species with a large repeat-rich genome.
    Morishige DT; Klein PE; Hilley JL; Sahraeian SM; Sharma A; Mullet JE
    BMC Genomics; 2013 Jul; 14():448. PubMed ID: 23829350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Dw1, a Regulator of Sorghum Stem Internode Length.
    Hilley J; Truong S; Olson S; Morishige D; Mullet J
    PLoS One; 2016; 11(3):e0151271. PubMed ID: 26963094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods.
    Zou G; Zhai G; Feng Q; Yan S; Wang A; Zhao Q; Shao J; Zhang Z; Zou J; Han B; Tao Y
    J Exp Bot; 2012 Sep; 63(15):5451-62. PubMed ID: 22859680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG.
    Kajiya-Kanegae H; Takanashi H; Fujimoto M; Ishimori M; Ohnishi N; Wacera W F; Omollo EA; Kobayashi M; Yano K; Nakano M; Kozuka T; Kusaba M; Iwata H; Tsutsumi N; Sakamoto W
    Plant Cell Physiol; 2020 Jul; 61(7):1262-1272. PubMed ID: 32353144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population genomic and genome-wide association studies of agroclimatic traits in sorghum.
    Morris GP; Ramu P; Deshpande SP; Hash CT; Shah T; Upadhyaya HD; Riera-Lizarazu O; Brown PJ; Acharya CB; Mitchell SE; Harriman J; Glaubitz JC; Buckler ES; Kresovich S
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):453-8. PubMed ID: 23267105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Genotype Markers for Plant Height and Assisted Breeding of Key Sorghum Resources in China.
    Wang Y; Lv N; Yin F; Duan G; Niu H; Chu J; Yan H; Ju L; Fan F; Lv X; Ping J
    Genes (Basel); 2024 Jan; 15(1):. PubMed ID: 38254972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo identification and targeted sequencing of SSRs efficiently fingerprints Sorghum bicolor sub-population identity.
    Baggett JP; Tillett RL; Cooper EA; Yerka MK
    PLoS One; 2021; 16(3):e0248213. PubMed ID: 33684158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum.
    Nelson JC; Wang S; Wu Y; Li X; Antony G; White FF; Yu J
    BMC Genomics; 2011 Jul; 12():352. PubMed ID: 21736744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection.
    Cuevas HE; Prom LK
    BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection.
    Upadhyaya HD; Wang YH; Gowda CL; Sharma S
    Theor Appl Genet; 2013 Aug; 126(8):2003-15. PubMed ID: 23649651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers.
    Ramu P; Billot C; Rami JF; Senthilvel S; Upadhyaya HD; Ananda Reddy L; Hash CT
    Theor Appl Genet; 2013 Aug; 126(8):2051-64. PubMed ID: 23708149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.
    Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L
    BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization.
    McCormick RF; Truong SK; Sreedasyam A; Jenkins J; Shu S; Sims D; Kennedy M; Amirebrahimi M; Weers BD; McKinley B; Mattison A; Morishige DT; Grimwood J; Schmutz J; Mullet JE
    Plant J; 2018 Jan; 93(2):338-354. PubMed ID: 29161754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homologues of potato chromosome 5 show variable collinearity in the euchromatin, but dramatic absence of sequence similarity in the pericentromeric heterochromatin.
    de Boer JM; Datema E; Tang X; Borm TJ; Bakker EH; van Eck HJ; van Ham RC; de Jong H; Visser RG; Bachem CW
    BMC Genomics; 2015 May; 16(1):374. PubMed ID: 25958312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.