These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 24265778)
1. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. Chauhan H; Khurana N; Agarwal P; Khurana JP; Khurana P PLoS One; 2013; 8(11):e79577. PubMed ID: 24265778 [TBL] [Abstract][Full Text] [Related]
2. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Chauhan H; Khurana N; Nijhavan A; Khurana JP; Khurana P Plant Cell Environ; 2012 Nov; 35(11):1912-31. PubMed ID: 22530593 [TBL] [Abstract][Full Text] [Related]
3. Wheat heat shock factor TaHsfA2d contributes to plant responses to phosphate deficiency. Zhao Y; Miao J; He J; Tian X; Gao K; Ma C; Tian X; Men W; Li H; Bi H; Liu W Plant Physiol Biochem; 2022 Aug; 185():178-187. PubMed ID: 35696892 [TBL] [Abstract][Full Text] [Related]
4. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Yokotani N; Ichikawa T; Kondou Y; Matsui M; Hirochika H; Iwabuchi M; Oda K Planta; 2008 Apr; 227(5):957-67. PubMed ID: 18064488 [TBL] [Abstract][Full Text] [Related]
5. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Gong B; Yi J; Wu J; Sui J; Khan MA; Wu Z; Zhong X; Seng S; He J; Yi M Plant Cell Rep; 2014 Sep; 33(9):1519-33. PubMed ID: 24874231 [TBL] [Abstract][Full Text] [Related]
6. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10. Guo XL; Yuan SN; Zhang HN; Zhang YY; Zhang YJ; Wang GY; Li YQ; Li GL BMC Plant Biol; 2020 Aug; 20(1):364. PubMed ID: 32746866 [TBL] [Abstract][Full Text] [Related]
7. Functional characterization of HSFs from wheat in response to heat and other abiotic stress conditions. Agarwal P; Khurana P Funct Integr Genomics; 2019 May; 19(3):497-513. PubMed ID: 30868385 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Chen H; Hwang JE; Lim CJ; Kim DY; Lee SY; Lim CO Biochem Biophys Res Commun; 2010 Oct; 401(2):238-44. PubMed ID: 20849812 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis. Song C; Chung WS; Lim CO Mol Cells; 2016 Jun; 39(6):477-83. PubMed ID: 27109422 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Ikeda M; Mitsuda N; Ohme-Takagi M Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690 [TBL] [Abstract][Full Text] [Related]
11. AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Li C; Chen Q; Gao X; Qi B; Chen N; Xu S; Chen J; Wang X Sci China C Life Sci; 2005 Dec; 48(6):540-50. PubMed ID: 16483133 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Qian J; Chen J; Liu YF; Yang LL; Li WP; Zhang LM Genet Mol Res; 2014 Feb; 13(1):1233-43. PubMed ID: 24634180 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Yoshida T; Ohama N; Nakajima J; Kidokoro S; Mizoi J; Nakashima K; Maruyama K; Kim JM; Seki M; Todaka D; Osakabe Y; Sakuma Y; Schöffl F; Shinozaki K; Yamaguchi-Shinozaki K Mol Genet Genomics; 2011 Dec; 286(5-6):321-32. PubMed ID: 21931939 [TBL] [Abstract][Full Text] [Related]
14. Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Cohen-Peer R; Schuster S; Meiri D; Breiman A; Avni A Plant Mol Biol; 2010 Sep; 74(1-2):33-45. PubMed ID: 20521085 [TBL] [Abstract][Full Text] [Related]
15. Wheat Heat Shock Factor TaHsfA6f Increases ABA Levels and Enhances Tolerance to Multiple Abiotic Stresses in Transgenic Plants. Bi H; Zhao Y; Li H; Liu W Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354160 [TBL] [Abstract][Full Text] [Related]
16. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Liu HC; Charng YY Plant Physiol; 2013 Sep; 163(1):276-90. PubMed ID: 23832625 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L. Duan S; Liu B; Zhang Y; Li G; Guo X BMC Genomics; 2019 Apr; 20(1):257. PubMed ID: 30935363 [TBL] [Abstract][Full Text] [Related]
18. Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Chauhan H; Khurana N; Agarwal P; Khurana P Mol Genet Genomics; 2011 Aug; 286(2):171-87. PubMed ID: 21792744 [TBL] [Abstract][Full Text] [Related]
19. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. He GH; Xu JY; Wang YX; Liu JM; Li PS; Chen M; Ma YZ; Xu ZS BMC Plant Biol; 2016 May; 16(1):116. PubMed ID: 27215938 [TBL] [Abstract][Full Text] [Related]
20. Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry. Liao WY; Lin LF; Jheng JL; Wang CC; Yang JH; Chou ML Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27999304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]