These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 24265944)

  • 1. Antisense oligonucleotide mediated therapy of spinal muscular atrophy.
    Sivanesan S; Howell MD; Didonato CJ; Singh RN
    Transl Neurosci; 2013 Mar; 4(1):. PubMed ID: 24265944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving concepts on human SMN pre-mRNA splicing.
    Singh RN
    RNA Biol; 2007; 4(1):7-10. PubMed ID: 17592254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy.
    Ottesen EW
    Transl Neurosci; 2017 Jan; 8():1-6. PubMed ID: 28400976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
    Singh RN; Singh NN
    Adv Neurobiol; 2018; 20():31-61. PubMed ID: 29916015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal muscular atrophy: an update on therapeutic progress.
    Seo J; Howell MD; Singh NN; Singh RN
    Biochim Biophys Acta; 2013 Dec; 1832(12):2180-90. PubMed ID: 23994186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy.
    Singh RN; Ottesen EW; Singh NN
    Neurosci Insights; 2020; 15():2633105520973985. PubMed ID: 33283185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.
    Singh NN; Howell MD; Androphy EJ; Singh RN
    Gene Ther; 2017 Sep; 24(9):520-526. PubMed ID: 28485722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome.
    Ottesen EW; Luo D; Singh NN; Singh RN
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA in spinal muscular atrophy: therapeutic implications of targeting.
    Singh RN; Seo J; Singh NN
    Expert Opin Ther Targets; 2020 Aug; 24(8):731-743. PubMed ID: 32538213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy.
    Osman EY; Yen PF; Lorson CL
    Mol Ther; 2012 Jan; 20(1):119-26. PubMed ID: 22031236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Context of a Critical Exon of Spinal Muscular Atrophy Gene.
    Singh NN; O'Leary CA; Eich T; Moss WN; Singh RN
    Front Mol Biosci; 2022; 9():928581. PubMed ID: 35847983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial treatment for spinal muscular atrophy: An Editorial for 'Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells' on page 264.
    Poletti A; Fischbeck KH
    J Neurochem; 2020 Apr; 153(2):146-149. PubMed ID: 32056234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
    Singh NN; Lee BM; DiDonato CJ; Singh RN
    Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy.
    Son HW; Yokota T
    Methods Mol Biol; 2018; 1828():57-68. PubMed ID: 30171534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy.
    Singh NN; Shishimorova M; Cao LC; Gangwani L; Singh RN
    RNA Biol; 2009; 6(3):341-50. PubMed ID: 19430205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts.
    Touznik A; Maruyama R; Hosoki K; Echigoya Y; Yokota T
    Sci Rep; 2017 Jun; 7(1):3672. PubMed ID: 28623256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells.
    Pagliarini V; Guerra M; Di Rosa V; Compagnucci C; Sette C
    J Neurochem; 2020 Apr; 153(2):264-275. PubMed ID: 31811660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Concentration or Combined Treatment of Antisense Oligonucleotides for Spinal Muscular Atrophy Perturbed
    Wijaya YOS; Niba ETE; Nishio H; Okamoto K; Awano H; Saito T; Takeshima Y; Shinohara M
    Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
    Singh NN; Lee BM; Singh RN
    Ann N Y Acad Sci; 2015 Apr; 1341():176-87. PubMed ID: 25727246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.