These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24266148)

  • 1. Augmentation method of triple phase boundary in thin film solid oxide fuel cell via physical vapor deposition.
    Park T; Chang I; Cha SW
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7834-8. PubMed ID: 24266148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.
    Bae K; Jang DY; Choi HJ; Kim D; Hong J; Kim BK; Lee JH; Son JW; Shim JH
    Nat Commun; 2017 Feb; 8():14553. PubMed ID: 28230080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry-controlled triple phase boundary study for low-temperature solid oxide fuel cells reaction kinetics.
    Kim YB
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7895-901. PubMed ID: 24266160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.
    An J; Kim YB; Gür TM; Prinz FB
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6790-5. PubMed ID: 23151148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer.
    Li Y; Wang S; Su PC
    Sci Rep; 2016 Feb; 6():22369. PubMed ID: 26928192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-annealing of thin-film yttria stabilized zirconia electrolytes for anode-supported low-temperature solid oxide fuel cells.
    Bae J; Chang I; Kang S; Hong S; Cha SW; Kim YB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9294-9. PubMed ID: 25971054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition.
    Pergolesi D; Fabbri E; D'Epifanio A; Di Bartolomeo E; Tebano A; Sanna S; Licoccia S; Balestrino G; Traversa E
    Nat Mater; 2010 Oct; 9(10):846-52. PubMed ID: 20852619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview on the Novel Core-Shell Electrodes for Solid Oxide Fuel Cell (SOFC) Using Polymeric Methodology.
    Wang RT; Chang HY; Wang JC
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition.
    An J; Kim YB; Prinz FB
    Phys Chem Chem Phys; 2013 May; 15(20):7520-5. PubMed ID: 23579635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.
    Bae K; Lee S; Jang DY; Kim HJ; Lee H; Shin D; Son JW; Shim JH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9097-103. PubMed ID: 27029066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing oxide ion incorporation kinetics by nanoscale Yttria-doped ceria interlayers.
    Fan Z; Prinz FB
    Nano Lett; 2011 Jun; 11(6):2202-5. PubMed ID: 21563786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.
    Yu CC; Baek JD; Su CH; Fan L; Wei J; Liao YC; Su PC
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10343-9. PubMed ID: 27045453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver and Samaria-Doped Ceria (Ag-SDC) Cermet Cathode for Low-Temperature Solid Oxide Fuel Cells.
    Jeong D; Lim Y; Kim H; Park Y; Hong S
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mn Additive Improves Zr Grain Boundary Diffusion for Sintering of a Y-Doped BaZrO
    Heo SJ; Harvey SP; Norman AG; Rahman MA; Singh P; Zakutayev A
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11646-11655. PubMed ID: 38387025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative interpretation of impedance spectroscopy data on porous LSM electrodes using X-ray computed tomography and Bayesian model-based analysis.
    Brunello GF; Epting WK; de Silva J; Salvador PA; Litster S; Finklea HO; Lee YL; Gerdes KR; Mebane DS
    Phys Chem Chem Phys; 2017 Sep; 19(37):25334-25345. PubMed ID: 28890971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective interfaces in yttrium-doped barium zirconate films and consequences on proton conduction.
    Yang N; Cantoni C; Foglietti V; Tebano A; Belianinov A; Strelcov E; Jesse S; Di Castro D; Di Bartolomeo E; Licoccia S; Kalinin SV; Balestrino G; Aruta C
    Nano Lett; 2015 Apr; 15(4):2343-9. PubMed ID: 25789878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Nanocomposite Solid Oxide Fuel Cell Cathodes by Preferential Clustering of Cations from a Single Polymeric Precursor.
    Eksioglu A; Colakerol Arslan L; Sezen M; Ow-Yang C; Buyukaksoy A
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47904-47916. PubMed ID: 31790191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction.
    Su C; Shao Z; Lin Y; Wu Y; Wang H
    Phys Chem Chem Phys; 2012 Sep; 14(35):12173-81. PubMed ID: 22870505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Roughening of Electrolyte Membrane for Pt- and Ru-Sputtered Passive Direct Methanol Fuel Cells.
    Jeong W; Cho GY; Cha SW; Park T
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Formation of Er
    He S; Zhang Q; Maurizio G; Catellani L; Chen K; Chang Q; Santarelli M; Jiang SP
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40549-40559. PubMed ID: 30394736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.