These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24266166)
41. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery. Qiu L; Shao Z; Xiang P; Wang D; Zhou Z; Wang F; Wang W; Wang J Carbohydr Polym; 2014 Sep; 110():121-7. PubMed ID: 24906737 [TBL] [Abstract][Full Text] [Related]
42. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties. Guan D; Cai C; Wang Y J Nanosci Nanotechnol; 2011 Apr; 11(4):3641-50. PubMed ID: 21776749 [TBL] [Abstract][Full Text] [Related]
43. Effect of substrate temperature on morphology and electrochemical performance of radio frequency magnetron sputtered lithium nickel vanadate films used as negative electrodes for lithium microbatteries. Reddy MV; Pecquenard B; Vinatier P; Levasseur A J Phys Chem B; 2006 Mar; 110(9):4301-6. PubMed ID: 16509727 [TBL] [Abstract][Full Text] [Related]
44. Electrochemical Performance of Deposited LiPON Film/Lithium Electrode in Lithium-Sulfur Batteries. Wang J; Xu R; Wang C; Xiong J Molecules; 2024 Sep; 29(17):. PubMed ID: 39275050 [TBL] [Abstract][Full Text] [Related]
45. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). Hy S; Felix F; Rick J; Su WN; Hwang BJ J Am Chem Soc; 2014 Jan; 136(3):999-1007. PubMed ID: 24364760 [TBL] [Abstract][Full Text] [Related]
47. Multi-Functional Surface Engineering for Li-Excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties. Bian X; Fu Q; Pang Q; Gao Y; Wei Y; Zou B; Du F; Chen G ACS Appl Mater Interfaces; 2016 Feb; 8(5):3308-18. PubMed ID: 26799857 [TBL] [Abstract][Full Text] [Related]
48. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries. Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851 [TBL] [Abstract][Full Text] [Related]
49. Sodium Doping to Enhance Electrochemical Performance of Overlithiated Oxide Cathode Materials for Li-Ion Batteries via Li/Na Ion-Exchange Method. Xue Z; Qi X; Li L; Li W; Xu L; Xie Y; Lai X; Hu G; Peng Z; Cao Y; Du K ACS Appl Mater Interfaces; 2018 Aug; 10(32):27141-27149. PubMed ID: 30028126 [TBL] [Abstract][Full Text] [Related]
50. Electrochemical characteristics of lithium iron phosphate with multi-walled carbon nanotube for lithium polymer batteries. Jin EM; Jin B; Park KH; Gu HB; Park GC; Kim KW J Nanosci Nanotechnol; 2008 Oct; 8(10):5057-61. PubMed ID: 19198390 [TBL] [Abstract][Full Text] [Related]
51. Aging effects of anatase TiO2 nanoparticles in Li-ion batteries. Madej E; Ventosa E; Klink S; Schuhmann W; La Mantia F Phys Chem Chem Phys; 2014 May; 16(17):7939-45. PubMed ID: 24647651 [TBL] [Abstract][Full Text] [Related]
52. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
53. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. Reddy MV; Prithvi G; Loh KP; Chowdari BV ACS Appl Mater Interfaces; 2014 Jan; 6(1):680-90. PubMed ID: 24325322 [TBL] [Abstract][Full Text] [Related]
54. Effect of Lithium Borate Additives on Cathode Film Formation in LiNi Dong Y; Young BT; Zhang Y; Yoon T; Heskett DR; Hu Y; Lucht BL ACS Appl Mater Interfaces; 2017 Jun; 9(24):20467-20475. PubMed ID: 28562011 [TBL] [Abstract][Full Text] [Related]
55. Stabilizing Li Zheng B; Zhu J; Wang H; Feng M; Umeshbabu E; Li Y; Wu QH; Yang Y ACS Appl Mater Interfaces; 2018 Aug; 10(30):25473-25482. PubMed ID: 29989392 [TBL] [Abstract][Full Text] [Related]
56. Structural and electrochemical properties of Ag nano-dots combined amorphous Si electrodes for thin-film lithium rechargeable batteries. Ahn HJ; Kim YS; Shim HS; Park BK; Moon WJ; Bae Kim W; Seong TY J Nanosci Nanotechnol; 2010 Dec; 10(12):8199-203. PubMed ID: 21121316 [TBL] [Abstract][Full Text] [Related]
57. Bioinspired Polysulfiphobic Artificial Interphase Layer on Lithium Metal Anodes for Lithium Sulfur Batteries. Shen X; Qian T; Chen P; Liu J; Wang M; Yan C ACS Appl Mater Interfaces; 2018 Sep; 10(36):30058-30064. PubMed ID: 30136847 [TBL] [Abstract][Full Text] [Related]
58. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902 [TBL] [Abstract][Full Text] [Related]
59. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273 [TBL] [Abstract][Full Text] [Related]
60. Synergistic Effects of Stabilizing the Surface Structure and Lowering the Interface Resistance in Improving the Low-Temperature Performances of Layered Lithium-Rich Materials. Chen S; Chen L; Li Y; Su Y; Lu Y; Bao L; Wang J; Wang M; Wu F ACS Appl Mater Interfaces; 2017 Mar; 9(10):8641-8648. PubMed ID: 28221025 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]