BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24266168)

  • 61. Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells.
    Cheng G; Akhtar MS; Yang OB; Stadler FJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6635-42. PubMed ID: 23777569
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties.
    Zhang Q; Li S; Li Y; Wang H
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11109-13. PubMed ID: 22409066
    [TBL] [Abstract][Full Text] [Related]  

  • 63. On the assessment of incorporation of CNT-TiO
    Ghartavol HM; Mohammadi MR; Afshar A; Li Y
    Photochem Photobiol Sci; 2019 Jul; 18(7):1840-1850. PubMed ID: 31204420
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Polyaniline-Layered Rutile TiO
    Roy A; Mukhopadhyay S; Devi PS; Sundaram S
    ACS Omega; 2019 Jan; 4(1):1130-1138. PubMed ID: 31459388
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells.
    Liu Y; She G; Qi X; Mu L; Wang X; Shi W
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7068-73. PubMed ID: 26716285
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of the electron transport properties in dye-sensitized solar cells using highly ordered TiO2 nanotubes and TiO2 nanoparticles.
    Kao MJ; Chang H; Cho KC; Kuo CG; Chien SH; Liang SS
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3515-9. PubMed ID: 22849158
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A simple and efficient method using polymer dispersion to prepare controllable nanoporous TiO2 anodes for dye-sensitized solar cells.
    Li J; Wang L; Kong X; Ma B; Shi Y; Zhan C; Qiu Y
    Langmuir; 2009 Sep; 25(18):11162-7. PubMed ID: 19572517
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Enhancement of Photoanode Efficiency in Dye-Sensitized Solar Cells with TiO₂/Graphene Nanocomposite.
    Loryuenyong V; Kaewmeesri P; Siritanon R; Nilwadee S; Buasri A
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7702-7706. PubMed ID: 31196278
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preparation of Photoactive Transition-Metal Layered Double Hydroxides (LDH) to Replace Dye-Sensitized Materials in Solar Cells.
    Naseem S; Gevers BR; Labuschagné FJWJ; Leuteritz A
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33019705
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Micrometer-sized fluorine doped tin oxide as fast electron collector for enhanced dye-sensitized solar cells.
    Cui XR; Wang YF; Li Z; Zhou L; Gao F; Zeng JH
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16593-600. PubMed ID: 25226086
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancement of photovoltaic performance in dye-sensitized solar cells with the spin-coated TiO2 blocking layer.
    Lee JG; Cheon JH; Yang HS; Lee DK; Kim JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6026-30. PubMed ID: 22966702
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improvement of the photoelectric dye sensitized solar cell performance using Fe/S-TiO
    Hsu CY; Al-Salman HNK; Mahmoud ZH; Ahmed RM; Dawood AF
    Sci Rep; 2024 Feb; 14(1):4931. PubMed ID: 38418464
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhanced electron transfer rate for quantum dot sensitized solar cell based on CNT-TiO2 film.
    Chen J; Lei W; Zhang XB
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6476-9. PubMed ID: 22962768
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of nitrogen doping on the performance of dye-sensitized solar cells composed of mesoporous TiO2 photoelectrodes.
    Eom KH; Yun TK; Hong JY; Bae JY; Huh S; Won YS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9362-7. PubMed ID: 25971066
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Flexible, transferable, and thermal-durable dye-sensitized solar cell photoanode consisting of TiO₂ nanoparticles and electrospun TiO₂/SiO₂ nanofibers.
    Wang X; Xi M; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15925-32. PubMed ID: 25162500
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-sensitized solar cells.
    Park JT; Ahn SH; Roh DK; Lee CS; Kim JH
    ChemSusChem; 2014 Jul; 7(7):2037-47. PubMed ID: 24678065
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination.
    Wang KP; Teng H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9489-96. PubMed ID: 19830333
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Layer-by-layer self-assembly of TiO2 hierarchical nanosheets with exposed {001} facets as an effective bifunctional layer for dye-sensitized solar cells.
    Sun W; Peng T; Liu Y; Yu W; Zhang K; Mehnane HF; Bu C; Guo S; Zhao XZ
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9144-9. PubMed ID: 24881671
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Preparation of brookite TiO
    Xu J; Wu S; Jin J; Peng T
    Nanoscale; 2016 Nov; 8(44):18771-18781. PubMed ID: 27801467
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 2,6-Bis(1-methylbenzimidazol-2-yl)pyridine: a new ancillary ligand for efficient thiocyanate-free ruthenium sensitizer in dye-sensitized solar cell applications.
    Singh SP; Gupta KS; Chandrasekharam M; Islam A; Han L; Yoshikawa S; Haga MA; Roy MS; Sharma GD
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11623-30. PubMed ID: 24187913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.