BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24266168)

  • 81. Au-Embedded and Carbon-Doped Freestanding TiO
    Rho WY; Lee KH; Han SH; Kim HY; Jun BH
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766717
    [TBL] [Abstract][Full Text] [Related]  

  • 82. TiO2-nanotube-based dye-sensitized solar cells containing fluorescent material.
    Kim WR; Lee YJ; Park H; Lee JJ; Choi WY
    J Nanosci Nanotechnol; 2013 May; 13(5):3487-90. PubMed ID: 23858885
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Enhancing the Contact Area of Ti Wire as Photoanode Substrate of Flexible Fiber-Type Dye-Sensitized Solar Cells Using the TiO
    Tien MS; Lin LY; Xiao BC; Hong ST
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731475
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Porous titania nanosheet/nanoparticle hybrids as photoanodes for dye-sensitized solar cells.
    Bai Y; Xing Z; Yu H; Li Z; Amal R; Wang L
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12058-65. PubMed ID: 24160763
    [TBL] [Abstract][Full Text] [Related]  

  • 85. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells.
    Kim WR; Park H; Choi WY
    Nanoscale Res Lett; 2014 Feb; 9(1):93. PubMed ID: 24565201
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A facile route to fabricate an anodic TiO2 nanotube-nanoparticle hybrid structure for high efficiency dye-sensitized solar cells.
    Lin J; Liu X; Guo M; Lu W; Zhang G; Zhou L; Chen X; Huang H
    Nanoscale; 2012 Aug; 4(16):5148-53. PubMed ID: 22797488
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Enhanced near-infrared to visible upconversion nanoparticles of Ho³⁺-Yb³⁺-F⁻ tri-doped TiO₂ and its application in dye-sensitized solar cells with 37% improvement in power conversion efficiency.
    Yu J; Yang Y; Fan R; Liu D; Wei L; Chen S; Li L; Yang B; Cao W
    Inorg Chem; 2014 Aug; 53(15):8045-53. PubMed ID: 25019645
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Increase of power conversion efficiency in dye-sensitized solar cells through ferroelectric substrate induced charge transport enhancement.
    Liu X; Zhang Q; Li J; Valanoor N; Tang X; Cao G
    Sci Rep; 2018 Nov; 8(1):17389. PubMed ID: 30478382
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells.
    Li ZQ; Ding Y; Mo LE; Hu LH; Wu JH; Dai SY
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22277-83. PubMed ID: 26393366
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes.
    Lee WJ; Ramasamy E; Lee DY; Song JS
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1145-9. PubMed ID: 20355903
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.
    Lee JW; Hwang KJ; Park DW; Park KH; Shim WG; Kim SC
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3717-21. PubMed ID: 18047044
    [TBL] [Abstract][Full Text] [Related]  

  • 92. High-performance plastic dye-sensitized solar cells based on low-cost commercial P25 TiO2 and organic dye.
    Yin X; Xue Z; Wang L; Cheng Y; Liu B
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1709-15. PubMed ID: 22324725
    [TBL] [Abstract][Full Text] [Related]  

  • 93. One-Pot Synthesis of Mesoporous TiO₂ Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells.
    Li ZQ; Que YP; Mo LE; Chen WC; Ding Y; Ma YM; Jiang L; Hu LH; Dai SY
    ACS Appl Mater Interfaces; 2015 May; 7(20):10928-34. PubMed ID: 25945694
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Solvothermal Synthesis of Hierarchical TiO
    Li ZQ; Mo LE; Chen WC; Shi XQ; Wang N; Hu LH; Hayat T; Alsaedi A; Dai SY
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32026-32033. PubMed ID: 28849650
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+.
    Li Y; Pan K; Wang G; Jiang B; Tian C; Zhou W; Qu Y; Liu S; Feng L; Fu H
    Dalton Trans; 2013 Jun; 42(22):7971-9. PubMed ID: 23455429
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells.
    Koh JH; Koh JK; Seo JA; Shin JS; Kim JH
    Nanotechnology; 2011 Sep; 22(36):365401. PubMed ID: 21836328
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fabrication and characterization of photoelectrode thin films with different morphologies of TiO2 nanoparticles for dye-sensitized solar cells.
    Kao MJ; Chang H; Kuo CG; Huang KD; Chen YL
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7459-62. PubMed ID: 22103219
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Template-free TiO
    Gaikwad MA; Mane AA; Desai SP; Moholkar AV
    J Colloid Interface Sci; 2017 Feb; 488():269-276. PubMed ID: 27837717
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Application of TiO2 nanoparticles coated multi-wall carbon nanotube to dye-sensitized solar cells.
    Chang H; Kao MJ; Huang KD; Hsieh TJ; Chien SH
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7671-5. PubMed ID: 21138007
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe
    Arora P; Fermah A; Rajput JK; Singh H; Badhan J
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19546-19560. PubMed ID: 28681294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.