These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24266212)

  • 1. Nano to micro particle size distribution measurement in the fluid by interactive force apparatus for fine particle processing.
    Fujita T; Dodbiba G; Okaya K; Matsuo S; Wang LP; Onda K; Otsuki A
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8184-9. PubMed ID: 24266212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Stability Study of Nano-Silver Particles Dispersed in Various Solvents by Turbiscan Lab Optical Analyzer].
    Xia ZH; Lü LY; Wang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1992-6. PubMed ID: 26717765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of polymeric submicron particle-containing microparticles using a 4-fluid nozzle spray drier.
    Ozeki T; Beppu S; Mizoe T; Takashima Y; Yuasa H; Okada H
    Pharm Res; 2006 Jan; 23(1):177-83. PubMed ID: 16267631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobubble size distribution measurement by interactive force apparatus under an electric field.
    Han Z; Chen H; He C; Dodbiba G; Otsuki A; Wei Y; Fujita T
    Sci Rep; 2023 Mar; 13(1):3663. PubMed ID: 36871118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single step bottom-up process to generate solid phospholipid nano-particles.
    Brinkmann-Trettenes U; Barnert S; Bauer-Brandl A
    Pharm Dev Technol; 2014 May; 19(3):326-32. PubMed ID: 23528006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products.
    Faust JJ; Doudrick K; Yang Y; Capco DG; Westerhoff P
    PLoS One; 2016; 11(10):e0164712. PubMed ID: 27798677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of spray dried submicron particles: Part A - Particle generation by aerosol conditioning.
    Strob R; Dobrowolski A; Schaldach G; Walzel P; Thommes M
    Int J Pharm; 2018 Sep; 548(1):423-430. PubMed ID: 29981411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.
    Anderson W; Kozak D; Coleman VA; Jämting ÅK; Trau M
    J Colloid Interface Sci; 2013 Sep; 405():322-30. PubMed ID: 23759321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E
    J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches.
    Barnett GV; Perhacs JM; Das TK; Kar SR
    Pharm Res; 2018 Feb; 35(3):58. PubMed ID: 29423663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Scattering Sizing of Single Submicron Particles by High-Sensitivity Flow Cytometry.
    Zhang W; Tian Y; Hu X; He S; Niu Q; Chen C; Zhu S; Yan X
    Anal Chem; 2018 Nov; 90(21):12768-12775. PubMed ID: 30277744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise size distribution measurement of aerosol particles and fog droplets in the open atmosphere.
    Di H; Wang Z; Hua D
    Opt Express; 2019 Jun; 27(12):A890-A908. PubMed ID: 31252863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic light scattering-based method to determine primary particle size of iron oxide nanoparticles in simulated gastrointestinal fluid.
    Yang SC; Paik SY; Ryu J; Choi KO; Kang TS; Lee JK; Song CW; Ko S
    Food Chem; 2014 Oct; 161():185-91. PubMed ID: 24837939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.
    Fransman W; Bekker C; Tromp P; Duis WB
    Ann Occup Hyg; 2016 Aug; 60(7):875-84. PubMed ID: 27234377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiangle dynamic light scattering for the improvement of multimodal particle size distribution measurements.
    Naiim M; Boualem A; Ferre C; Jabloun M; Jalocha A; Ravier P
    Soft Matter; 2015 Jan; 11(1):28-32. PubMed ID: 25370714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Nanosize Particle Analysis by Dynamic Light Scattering (DLS)].
    Ashizawa K
    Yakugaku Zasshi; 2019; 139(2):237-248. PubMed ID: 30713234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of Ultra Fine Particles in Electric Field.
    Shibata J; Murayama N
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2575-8. PubMed ID: 26413708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions.
    Philips LA; Ruffner DB; Cheong FC; Blusewicz JM; Kasimbeg P; Waisi B; McCutcheon JR; Grier DG
    Water Res; 2017 Oct; 122():431-439. PubMed ID: 28624726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Approach for the Fabrication of Tetragonal BaTiO₃ Nanoparticles.
    Tan VT; Vinh T; Khoi VM; Chinh HD; Tuan PV; Khiem TN
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2692-2701. PubMed ID: 33500095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrations of nano and related ambient air pollutants at a traffic sampling site.
    Fang GC; Wu YS; Wen CC; Lin CK; Huang SH; Rau JY; Lin CP
    Toxicol Ind Health; 2005 Nov; 21(10):259-71. PubMed ID: 16463959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.