BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24266232)

  • 1. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.
    Misak HE; Sabelkin V; Miller L; Asmatulu R; Mall S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8331-9. PubMed ID: 24266232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional carbon nanotube yarns by downsizing an ancient technology.
    Zhang M; Atkinson KR; Baughman RH
    Science; 2004 Nov; 306(5700):1358-61. PubMed ID: 15550667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration.
    Abot JL; Góngora-Rubio MR; Anike JC; Kiyono CY; Mello LAM; Cardoso VF; Rosa RLS; Kuebler DA; Brodeur GE; Alotaibi AH; Coene MP; Coene LM; Jean E; Santiago RC; Oliveira FHA; Rangel R; Thomas GP; Belay K; da Silva LW; Moura RT; Seabra AC; Silva ECN
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on multi-step creep properties of rat skins.
    Chen G; Cui S; You L; Li Y; Mei YH; Chen X
    J Mech Behav Biomed Mater; 2015 Jun; 46():49-58. PubMed ID: 25771256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Temperature Cross-Linking of Carbon Nanotube Multi-Yarn Using Polyvinylpyrrolidone as a Binding Agent.
    Misak H; Asmatulu R; Whitman J; Mall S
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2283-8. PubMed ID: 26413653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predictive model of the tensile strength of twisted carbon nanotube yarns.
    Jeon SY; Jang J; Koo BW; Kim YW; Yu WR
    Nanotechnology; 2017 Jan; 28(1):015703. PubMed ID: 27897138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ multi-dimensional actuation measurement method for tensile actuation of paraffin-infiltrated multi-wall carbon nanotube yarns.
    Dang DX; Truong TK; Lim SC; Suh D
    Rev Sci Instrum; 2017 Jul; 88(7):075001. PubMed ID: 28764550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic Tensile Strength and Fatigue Life of Carbon Nanotube Multi-Yarn.
    Misak HE; Mall S
    J Nanosci Nanotechnol; 2016 Mar; 16(3):3021-5. PubMed ID: 27455753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships.
    Beese AM; Wei X; Sarkar S; Ramachandramoorthy R; Roenbeck MR; Moravsky A; Ford M; Yavari F; Keane DT; Loutfy RO; Nguyen ST; Espinosa HD
    ACS Nano; 2014 Nov; 8(11):11454-66. PubMed ID: 25353651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observation of carbon nanotube yarn during voltage application.
    Tokunaga T; Hayashi Y; Iijima T; Uesugi Y; Unten M; Sasaki K; Yamamoto T
    Micron; 2015 Jul; 74():30-4. PubMed ID: 25939086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic carbon nanotube straight yarns embedded with helical loops.
    Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A
    Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic conductivity transition of carbon nanotube yarns coated with silver particles.
    Zhang D; Zhang Y; Miao M
    Nanotechnology; 2014 Jul; 25(27):275702. PubMed ID: 24960558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and process-dependent properties of solid-state spun carbon nanotube yarns.
    Fang S; Zhang M; Zakhidov AA; Baughman RH
    J Phys Condens Matter; 2010 Aug; 22(33):334221. PubMed ID: 21386511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection.
    Wang Z; Huang Y; Sun J; Huang Y; Hu H; Jiang R; Gai W; Li G; Zhi C
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24837-43. PubMed ID: 27558025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods.
    Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene).
    Xin W; Severino J; Venkert A; Yu H; Knorr D; Yang JM; Carlson L; Hicks R; De Rosa I
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn.
    Foroughi J; Spinks GM; Ghorbani SR; Kozlov ME; Safaei F; Peleckis G; Wallace GG; Baughman RH
    Nanoscale; 2012 Feb; 4(3):940-5. PubMed ID: 22173836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.