These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24266232)

  • 21. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy.
    Kwon CH; Chun KY; Kim SH; Lee JH; Kim JH; Lima MD; Baughman RH; Kim SJ
    Nanoscale; 2015 Feb; 7(6):2489-96. PubMed ID: 25567113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-step process to improve the mechanical properties of carbon nanotube yarn.
    Evora MC; Lu X; Hiremath N; Kang NG; Hong K; Uribe R; Bhat G; Mays J
    Beilstein J Nanotechnol; 2018; 9():545-554. PubMed ID: 29527431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabric-Reinforced Cementitious Matrix (FRCM) Carbon Yarns with Different Surface Treatments Embedded in a Cementitious Mortar: Mechanical and Durability Studies.
    Bompadre F; Donnini J
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance.
    Son W; Chun S; Lee JM; Jeon G; Sim HJ; Kim HW; Cho SB; Lee D; Park J; Jeon J; Suh D; Choi C
    ACS Nano; 2022 Feb; 16(2):2661-2671. PubMed ID: 35072453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of Aramid Yarns Sizing.
    Krstović K; Kovačević S; Schwarz I; Brnada S
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Woven Fabrics Made of Auxetic Plied Yarns.
    Ng WS; Hu H
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators.
    Li Y; Shang Y; He X; Peng Q; Du S; Shi E; Wu S; Li Z; Li P; Cao A
    ACS Nano; 2013 Sep; 7(9):8128-35. PubMed ID: 23962111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wash Testing of Electronic Yarn.
    Hardy DA; Rahemtulla Z; Satharasinghe A; Shahidi A; Oliveira C; Anastasopoulos I; Nashed MN; Kgatuke M; Komolafe A; Torah R; Tudor J; Hughes-Riley T; Beeby S; Dias T
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Power of Fiber Twist.
    Zhou X; Fang S; Leng X; Liu Z; Baughman RH
    Acc Chem Res; 2021 Jun; 54(11):2624-2636. PubMed ID: 33982565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scale and twist effects on the strength of nanostructured yarns and reinforced composites.
    Beyerlein IJ; Porwal PK; Zhu YT; Hu K; Xu XF
    Nanotechnology; 2009 Dec; 20(48):485702. PubMed ID: 19880980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery.
    Son W; Lee JM; Kim SH; Kim HW; Cho SB; Suh D; Chun S; Choi C
    Nano Lett; 2022 Mar; 22(6):2470-2478. PubMed ID: 35254078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the effect of different filaments and yarn structures on mechanical and physical properties of dual-core elastane composite yarns.
    Irfan M; Qadir MB; Afzal A; Shaker K; Salman SM; Majeed N; Indrie L; Albu A
    Heliyon; 2023 Sep; 9(9):e20007. PubMed ID: 37809450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum.
    Gigax JG; Bradford PD; Shao L
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the Work Capacity of Electrochemical Artificial Muscles by Coiling Plies of Twist-Released Carbon Nanotube Yarns.
    Kim KJ; Hyeon JS; Kim H; Mun TJ; Haines CS; Li N; Baughman RH; Kim SJ
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13533-13537. PubMed ID: 30924629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells.
    Zhang S; Ji C; Bian Z; Yu P; Zhang L; Liu D; Shi E; Shang Y; Peng H; Cheng Q; Wang D; Huang C; Cao A
    ACS Nano; 2012 Aug; 6(8):7191-8. PubMed ID: 22861684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast Torsional Artificial Muscles from NiTi Twisted Yarns.
    Mirvakili SM; Hunter IW
    ACS Appl Mater Interfaces; 2017 May; 9(19):16321-16326. PubMed ID: 28447459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong and Robust Electrochemical Artificial Muscles by Ionic-Liquid-in-Nanofiber-Sheathed Carbon Nanotube Yarns.
    Ren M; Qiao J; Wang Y; Wu K; Dong L; Shen X; Zhang H; Yang W; Wu Y; Yong Z; Chen W; Zhang Y; Di J; Li Q
    Small; 2021 Feb; 17(5):e2006181. PubMed ID: 33432780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.