These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24266232)

  • 61. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.
    Zhong XH; Li YL; Feng JM; Kang YR; Han SS
    Nanoscale; 2012 Sep; 4(18):5614-8. PubMed ID: 22864939
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Temperature-Responsive Tensile Actuator Based on Multi-walled Carbon Nanotube Yarn.
    Kim H; Lee JA; Sim HJ; Lima MD; Baughman RH; Kim SJ
    Nanomicro Lett; 2016; 8(3):254-259. PubMed ID: 30460285
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.
    Liu K; Zhu F; Liu L; Sun Y; Fan S; Jiang K
    Nanoscale; 2012 Jun; 4(11):3389-93. PubMed ID: 22538869
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Carbon nanotube yarn strain sensors.
    Zhao H; Zhang Y; Bradford PD; Zhou Q; Jia Q; Yuan FG; Zhu Y
    Nanotechnology; 2010 Jul; 21(30):305502. PubMed ID: 20610871
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Piezo-Resistive Properties of Bio-Based Sensor Yarn Made with Sisal Fibre.
    Abed A; Samouh Z; Cochrane C; Boussu F; Cherkaoui O; El Moznine R; Vieillard J
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34198484
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine.
    Al-Graiti W; Yue Z; Foroughi J; Huang XF; Wallace G; Baughman R; Chen J
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420196
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels.
    Yamamoto E; Paul Crawford R; Chan DD; Keaveny TM
    J Biomech; 2006; 39(10):1812-8. PubMed ID: 16038915
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Magnetic torsional actuation of carbon nanotube yarn artificial muscle.
    Lee DW; Kim SH; Kozlov ME; Lepró X; Baughman RH; Kim SJ
    RSC Adv; 2018 May; 8(31):17421-17425. PubMed ID: 35539247
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Continuous High-Aligned Polyacrylonitrile Electrospun Nanofibers Yarns via Circular Deposition on Water Bath.
    Bin Y; Hao Y; Zhu M; Wang H
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5633-8. PubMed ID: 27427608
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Directional neurite outgrowth on superaligned carbon nanotube yarn patterned substrate.
    Fan L; Feng C; Zhao W; Qian L; Wang Y; Li Y
    Nano Lett; 2012 Jul; 12(7):3668-73. PubMed ID: 22694271
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Piezoresistive effect in carbon nanotube fibers.
    Lekawa-Raus A; Koziol KK; Windle AH
    ACS Nano; 2014 Nov; 8(11):11214-24. PubMed ID: 25337627
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In vivo remodeling of human cell-assembled extracellular matrix yarns.
    Magnan L; Kawecki F; Labrunie G; Gluais M; Izotte J; Marais S; Foulc MP; Lafourcade M; L'Heureux N
    Biomaterials; 2021 Jun; 273():120815. PubMed ID: 33894404
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk.
    Chun KY; Hyeong Kim S; Kyoon Shin M; Hoon Kwon C; Park J; Tae Kim Y; Spinks GM; Lima MD; Haines CS; Baughman RH; Jeong Kim S
    Nat Commun; 2014; 5():3322. PubMed ID: 24557457
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Creep behavior of hand-mixed Simplex P bone cement under cyclic tensile loading.
    Verdonschot N; Huiskes R
    J Appl Biomater; 1994; 5(3):235-43. PubMed ID: 10147450
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Computational and Experimental Study of Performance of an Artificial Ligament: DacronTM yarn.
    Chu TM; Sokol M; Fischer IS
    Comput Methods Biomech Biomed Engin; 2000; 3(4):309-319. PubMed ID: 11264856
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Experimental Investigation on the In-Plane Creep Behavior of a Carbon-Fiber Sheet Molding Compound at Elevated Temperature at Different Stress States.
    Finck D; Seidel C; Ostermeier A; Hausmann J; Rief T
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32503212
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biscrolling nanotube sheets and functional guests into yarns.
    Lima MD; Fang S; Lepró X; Lewis C; Ovalle-Robles R; Carretero-González J; Castillo-Martínez E; Kozlov ME; Oh J; Rawat N; Haines CS; Haque MH; Aare V; Stoughton S; Zakhidov AA; Baughman RH
    Science; 2011 Jan; 331(6013):51-5. PubMed ID: 21212350
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Automatic Modeller of Textile Yarns at Fibre Level.
    Aychilie DB; Kyosev Y; Abtew MA
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556693
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Drug release behavior of electrospun twisted yarns as implantable medical devices.
    Maleki H; Gharehaghaji AA; Toliyat T; Dijkstra PJ
    Biofabrication; 2016 Sep; 8(3):035019. PubMed ID: 27634914
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Empirical model for matching spectrophotometric reflectance of yarn windings and multispectral imaging reflectance of single strands of yarns.
    Luo L; Shen HL; Shao SJ; Xin J
    J Opt Soc Am A Opt Image Sci Vis; 2015 Aug; 32(8):1459-67. PubMed ID: 26367289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.