These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24266405)
1. Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment. Vandieken V; Finke N; Thamdrup B FEMS Microbiol Ecol; 2014 Mar; 87(3):733-45. PubMed ID: 24266405 [TBL] [Abstract][Full Text] [Related]
2. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. Finke N; Vandieken V; Jørgensen BB FEMS Microbiol Ecol; 2007 Jan; 59(1):10-22. PubMed ID: 17069623 [TBL] [Abstract][Full Text] [Related]
3. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. Vandieken V; Pester M; Finke N; Hyun JH; Friedrich MW; Loy A; Thamdrup B ISME J; 2012 Nov; 6(11):2078-90. PubMed ID: 22572639 [TBL] [Abstract][Full Text] [Related]
4. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Thamdrup B; Rosselló-Mora R; Amann R Appl Environ Microbiol; 2000 Jul; 66(7):2888-97. PubMed ID: 10877783 [TBL] [Abstract][Full Text] [Related]
5. Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. Vandieken V; Thamdrup B FEMS Microbiol Ecol; 2013 May; 84(2):373-86. PubMed ID: 23289443 [TBL] [Abstract][Full Text] [Related]
6. Pathways of carbon oxidation in continental margin sediments off central Chile. Thamdrup B; Canfield DE Limnol Oceanogr; 1996 Dec; 41(8):1629-50. PubMed ID: 11540503 [TBL] [Abstract][Full Text] [Related]
7. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions. Kwon MJ; O'Loughlin EJ; Boyanov MI; Brulc JM; Johnston ER; Kemner KM; Antonopoulos DA PLoS One; 2016; 11(1):e0146689. PubMed ID: 26800443 [TBL] [Abstract][Full Text] [Related]
8. Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica. Mountfort DO; Kaspar HF; Asher RA; Sutherland D Appl Environ Microbiol; 2003 Jan; 69(1):583-92. PubMed ID: 12514045 [TBL] [Abstract][Full Text] [Related]
9. Pathways of organic carbon oxidation in three continental margin sediments. Canfield DE; Jorgensen BB; Fossing H; Glud R; Gundersen J; Ramsing NB; Thamdrup B; Hansen JW; Nielsen LP; Hall PO Mar Geol; 1993; 113():27-40. PubMed ID: 11539842 [TBL] [Abstract][Full Text] [Related]
10. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. Finke N; Jørgensen BB ISME J; 2008 Aug; 2(8):815-29. PubMed ID: 18309360 [TBL] [Abstract][Full Text] [Related]
11. Functional diversity of bacteria in a ferruginous hydrothermal sediment. Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934 [TBL] [Abstract][Full Text] [Related]
12. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. Kappler A; Benz M; Schink B; Brune A FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349 [TBL] [Abstract][Full Text] [Related]
13. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Canfield DE; Thamdrup B; Hansen JW Geochim Cosmochim Acta; 1993 Aug; 57(16):3867-83. PubMed ID: 11537734 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Mazur CS; Jones WJ Environ Sci Technol; 2001 Dec; 35(24):4783-8. PubMed ID: 11775153 [TBL] [Abstract][Full Text] [Related]
15. Metabolic potential of microbial communities from ferruginous sediments. Vuillemin A; Horn F; Friese A; Winkel M; Alawi M; Wagner D; Henny C; Orsi WD; Crowe SA; Kallmeyer J Environ Microbiol; 2018 Dec; 20(12):4297-4313. PubMed ID: 29968357 [TBL] [Abstract][Full Text] [Related]
16. Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Beulig F; Røy H; Glombitza C; Jørgensen BB Proc Natl Acad Sci U S A; 2018 Jan; 115(2):367-372. PubMed ID: 29279408 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic microbiota: spatial-temporal changes in the sediment of a tropical coastal lagoon with ephemeral inlet in the Gulf of Mexico. Torres-Alvarado MR; Calva-Benítez LG; Álvarez-Hernández S; Trejo-Aguilar G Rev Biol Trop; 2016 Dec; 64(4):1759-70. PubMed ID: 29465951 [TBL] [Abstract][Full Text] [Related]
18. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Mountfort DO; Kaspar HF; Downes M; Asher RA Appl Environ Microbiol; 1999 Dec; 65(12):5493-9. PubMed ID: 10584008 [TBL] [Abstract][Full Text] [Related]
19. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Chen C; Shen Y; An D; Voordouw G Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297 [TBL] [Abstract][Full Text] [Related]
20. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community. Zhang Z; Lo IM Appl Microbiol Biotechnol; 2015 Jul; 99(13):5683-96. PubMed ID: 25661814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]