BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24266457)

  • 21. The enzyme: Renalase.
    Moran GR; Hoag MR
    Arch Biochem Biophys; 2017 Oct; 632():66-76. PubMed ID: 28558965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Renalase, a catecholamine-metabolising enzyme?
    Boomsma F; Tipton KF
    J Neural Transm (Vienna); 2007; 114(6):775-6. PubMed ID: 17385068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human urinary renalase lacks the N-terminal signal peptide crucial for accommodation of its FAD cofactor.
    Fedchenko VI; Buneeva OA; Kopylov AT; Veselovsky AV; Zgoda VG; Medvedev AE
    Int J Biol Macromol; 2015; 78():347-53. PubMed ID: 25910647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis.
    Heredia VV; Penning TM
    Biochemistry; 2004 Sep; 43(38):12028-37. PubMed ID: 15379543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypertension and kidney disease: is renalase a new player or an innocent bystander?
    Malyszko J; Malyszko JS; Mikhailidis DP; Rysz J; Zorawski M; Banach M
    J Hypertens; 2012 Mar; 30(3):457-62. PubMed ID: 22227817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved soluble expression and use of recombinant human renalase.
    Morrison CS; Paskaleva EE; Rios MA; Beusse TR; Blair EM; Lin LQ; Hu JR; Gorby AH; Dodds DR; Armiger WB; Dordick JS; Koffas MAG
    PLoS One; 2020; 15(11):e0242109. PubMed ID: 33180865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits.
    Takahashi K; Klinman JP
    Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is renalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme.
    Baroni S; Milani M; Pandini V; Pavesi G; Horner D; Aliverti A
    Curr Pharm Des; 2013; 19(14):2540-51. PubMed ID: 23116393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox potential and equilibria in the reductive half-reaction of Vibrio harveyi NADPH-FMN oxidoreductase.
    Lei B; Wang H; Yu Y; Tu SC
    Biochemistry; 2005 Jan; 44(1):261-7. PubMed ID: 15628867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design.
    Woodyer R; van der Donk WA; Zhao H
    Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.