These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24266457)

  • 41. Renalase-A new understanding of its enzymatic and non-enzymatic activity and its implications for future research.
    Czerwińska K; Poręba R; Gać P
    Clin Exp Pharmacol Physiol; 2022 Jan; 49(1):3-9. PubMed ID: 34545616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Serum renalase depends on kidney function but not on blood pressure in heart transplant recipients.
    Przybylowski P; Malyszko J; Kozlowska S; Malyszko J; Koc-Zorawska E; Mysliwiec M
    Transplant Proc; 2011 Dec; 43(10):3888-91. PubMed ID: 22172866
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL; Kasper CB
    Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative kinetics of cofactor association and dissociation for the human and trypanosomal S-adenosylhomocysteine hydrolases. 1. Basic features of the association and dissociation processes.
    Li QS; Cai S; Borchardt RT; Fang J; Kuczera K; Middaugh CR; Schowen RL
    Biochemistry; 2007 May; 46(19):5798-809. PubMed ID: 17447732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles.
    Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ
    FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renalase deficiency in chronic kidney disease, and its contribution to hypertension and cardiovascular disease.
    Desir GV
    Curr Opin Nephrol Hypertens; 2008 Mar; 17(2):181-5. PubMed ID: 18277152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extracellular renalase protects cells and organs by outside-in signalling.
    Wang Y; Safirstein R; Velazquez H; Guo XJ; Hollander L; Chang J; Chen TM; Mu JJ; Desir GV
    J Cell Mol Med; 2017 Jul; 21(7):1260-1265. PubMed ID: 28238213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The mysterious properties of renalase].
    Matoszka N; Wiśniewska M; Dołegowska B
    Postepy Biochem; 2014; 60(1):90-3. PubMed ID: 25033547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Renalase Secreted by Human Kidney HEK293T Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action.
    Fedchenko V; Kopylov A; Kozlova N; Buneeva O; Kaloshin A; Zgoda V; Medvedev A
    Kidney Blood Press Res; 2016; 41(5):593-603. PubMed ID: 27577995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems.
    Medvedev AE; Veselovsky AV; Fedchenko VI
    Biochemistry (Mosc); 2010 Aug; 75(8):951-8. PubMed ID: 21073414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis.
    Black WB; Zhang L; Mak WS; Maxel S; Cui Y; King E; Fong B; Sanchez Martinez A; Siegel JB; Li H
    Nat Chem Biol; 2020 Jan; 16(1):87-94. PubMed ID: 31768035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasma renalase in chronic kidney disease: differences and similarities between humans and rats.
    Quelhas-Santos J; Pestana M
    Curr Hypertens Rev; 2014; 10(3):166-70. PubMed ID: 25567503
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Substrate-specific enhancement of the oxidative half-reaction of monoamine oxidase.
    Tan AK; Ramsay RR
    Biochemistry; 1993 Mar; 32(9):2137-43. PubMed ID: 8443155
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kidney and hypertension: is there a place for renalase?
    Zbroch E; Małyszko J; Małyszko J; Zórawski MJ; Myśliwiec M
    Pol Arch Med Wewn; 2012; 122(4):174-9. PubMed ID: 22415317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of blood pressure and cardiovascular function by renalase.
    Desir GV
    Kidney Int; 2009 Aug; 76(4):366-70. PubMed ID: 19471322
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Renalase deficiency aggravates ischemic myocardial damage.
    Wu Y; Xu J; Velazquez H; Wang P; Li G; Liu D; Sampaio-Maia B; Quelhas-Santos J; Russell K; Russell R; Flavell RA; Pestana M; Giordano F; Desir GV
    Kidney Int; 2011 Apr; 79(8):853-60. PubMed ID: 21178975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Associations between renalase concentration and the occurrence of selected diseases.
    Czubilińska-Łada J; Gliwińska A; Badeński A; Szczepańska M
    Endokrynol Pol; 2020; 71(4):334-342. PubMed ID: 32852050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.