These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24266470)

  • 1. Excited states of positronic lithium and beryllium.
    Bubin S; Prezhdo OV
    Phys Rev Lett; 2013 Nov; 111(19):193401. PubMed ID: 24266470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excited S-symmetry states of positronic lithium and beryllium.
    Strasburger K
    J Chem Phys; 2016 Apr; 144(14):144316. PubMed ID: 27083730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positron binding to lithium excited states.
    Bressanini D
    Phys Rev Lett; 2012 Nov; 109(22):223401. PubMed ID: 23368117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of Positron Binding Energies and Electron-Positron Annihilation Rates for Atomic Systems with the Reduced Explicitly Correlated Hartree-Fock Method in the Nuclear-Electronic Orbital Framework.
    Brorsen KR; Pak MV; Hammes-Schiffer S
    J Phys Chem A; 2017 Jan; 121(2):515-522. PubMed ID: 28001073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Born-Oppenheimer study of positronic molecular systems: e(+)LiH.
    Bubin S; Adamowicz L
    J Chem Phys; 2004 Apr; 120(13):6051-5. PubMed ID: 15267488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: applications to positronic molecular systems.
    Sirjoosingh A; Pak MV; Swalina C; Hammes-Schiffer S
    J Chem Phys; 2013 Jul; 139(3):034103. PubMed ID: 23883006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configuration interaction calculations of potential curves and annihilation rates for positronic complexes of alkali monoxides.
    Buenker RJ; Liebermann HP
    J Chem Phys; 2009 Sep; 131(11):114107. PubMed ID: 19778100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explicitly correlated gaussian calculations of the 2D Rydberg states of the boron atom.
    Sharkey KL; Bubin S; Adamowicz L
    J Chem Phys; 2012 Aug; 137(6):064313. PubMed ID: 22897279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structure calculations: a unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation.
    Mátyus E; Reiher M
    J Chem Phys; 2012 Jul; 137(2):024104. PubMed ID: 22803525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the electric dipole moment in positron binding to the ground and excited states of the BeO molecule.
    Buenker RJ; Liebermann HP; Pichl L; Tachikawa M; Kimura M
    J Chem Phys; 2007 Mar; 126(10):104305. PubMed ID: 17362066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the accuracy the experimental energies of the 1P(o) 1s(2)2s6p and 1s(2)2s7p states of 9Be based on variational calculations with explicitly correlated Gaussians.
    Bubin S; Adamowicz L
    J Chem Phys; 2012 Sep; 137(10):104315. PubMed ID: 22979867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refinement of the experimental energy levels of higher 2D Rydberg states of the lithium atom with very accurate quantum mechanical calculations.
    Sharkey KL; Bubin S; Adamowicz L
    J Chem Phys; 2011 May; 134(19):194114. PubMed ID: 21599051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio study of the positronation of the CaO and SrO molecules including calculation of annihilation rates.
    Buenker RJ; Liebermann HP
    J Comput Chem; 2012 Jul; 33(19):1594-602. PubMed ID: 22522712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of (1)P Rydberg energy levels of beryllium based on calculations with explicitly correlated Gaussians.
    Bubin S; Adamowicz L
    J Chem Phys; 2014 Jan; 140(2):024301. PubMed ID: 24437871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explicitly correlated Gaussian calculations of the 2P(o) Rydberg spectrum of the lithium atom.
    Bubin S; Adamowicz L
    J Chem Phys; 2012 Apr; 136(13):134305. PubMed ID: 22482550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positron attachment to the He doubly excited states.
    Bromley MW; Mitroy J; Varga K
    Phys Rev Lett; 2012 Aug; 109(6):063201. PubMed ID: 23006262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for Pauli exchange leading to excited-state enhancement in electron transfer.
    Tanis JA; Landers AL; Pole DJ; Alnaser AS; Hossain S; Kirchner T
    Phys Rev Lett; 2004 Apr; 92(13):133201. PubMed ID: 15089606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of electron-positron wavefunctions in the nuclear-electronic orbital framework.
    Swalina C; Pak MV; Hammes-Schiffer S
    J Chem Phys; 2012 Apr; 136(16):164105. PubMed ID: 22559468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of the positron annihilation rate in PsH with the positronic extension of the explicitly correlated nuclear-electronic orbital method.
    Pak MV; Chakraborty A; Hammes-Schiffer S
    J Phys Chem A; 2009 Apr; 113(16):4004-8. PubMed ID: 19281179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio quantum Monte Carlo study of the positronic hydrogen cyanide molecule.
    Kita Y; Maezono R; Tachikawa M; Towler M; Needs RJ
    J Chem Phys; 2009 Oct; 131(13):134310. PubMed ID: 19814556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.