These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24266472)

  • 1. Stimulated emission tomography.
    Liscidini M; Sipe JE
    Phys Rev Lett; 2013 Nov; 111(19):193602. PubMed ID: 24266472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.
    Grassani D; Simbula A; Pirotta S; Galli M; Menotti M; Harris NC; Baehr-Jones T; Hochberg M; Galland C; Liscidini M; Bajoni D
    Sci Rep; 2016 Apr; 6():23564. PubMed ID: 27032688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion.
    Zhong HS; Li Y; Li W; Peng LC; Su ZE; Hu Y; He YM; Ding X; Zhang W; Li H; Zhang L; Wang Z; You L; Wang XL; Jiang X; Li L; Chen YA; Liu NL; Lu CY; Pan JW
    Phys Rev Lett; 2018 Dec; 121(25):250505. PubMed ID: 30608840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral characterization of photon-pair sources via classical sum-frequency generation.
    Kaneda F; Oikawa J; Yabuno M; China F; Miki S; Terai H; Mitsumori Y; Edamatsu K
    Opt Express; 2020 Dec; 28(26):38993-39004. PubMed ID: 33379457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide.
    Arahira S; Namekata N; Kishimoto T; Yaegashi H; Inoue S
    Opt Express; 2011 Aug; 19(17):16032-43. PubMed ID: 21934967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrowband photon pairs with independent frequency tuning for quantum light-matter interactions.
    Prakash V; Bianchet LC; Cuairan MT; Gomez P; Bruno N; Mitchell MW
    Opt Express; 2019 Dec; 27(26):38463-38478. PubMed ID: 31878613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-ordering effects in the generation of entangled photons using nonlinear optical processes.
    Quesada N; Sipe JE
    Phys Rev Lett; 2015 Mar; 114(9):093903. PubMed ID: 25793817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion.
    Slattery O; Ma L; Zong K; Tang X
    J Res Natl Inst Stand Technol; 2019; 124():1-18. PubMed ID: 34877185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of 1.5 μm discrete frequency-entangled two-photon state in polarization-maintaining fibers.
    Zhou Q; Zhang W; Yuan C; Huang Y; Peng J
    Opt Lett; 2014 Apr; 39(7):2109-12. PubMed ID: 24686687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1.5-μm band polarization entangled photon-pair source with variable Bell states.
    Arahira S; Kishimoto T; Murai H
    Opt Express; 2012 Apr; 20(9):9862-75. PubMed ID: 22535079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entangled photon-pair sources based on three-wave mixing in bulk crystals.
    Anwar A; Perumangatt C; Steinlechner F; Jennewein T; Ling A
    Rev Sci Instrum; 2021 Apr; 92(4):041101. PubMed ID: 34243479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.
    Kwon O; Park KK; Ra YS; Kim YS; Kim YH
    Opt Express; 2013 Oct; 21(21):25492-500. PubMed ID: 24150388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entangled photon generation in two-period quasi-phase-matched parametric down-conversion.
    Ueno W; Kaneda F; Suzuki H; Nagano S; Syouji A; Shimizu R; Suizu K; Edamatsu K
    Opt Express; 2012 Feb; 20(5):5508-17. PubMed ID: 22418356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source.
    Kumano H; Matsuda K; Ekuni S; Sasakura H; Suemune I
    Opt Express; 2011 Jul; 19(15):14249-59. PubMed ID: 21934789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffraction of collinear correlated photon pairs by an ultrasonic wave.
    Kwiek P
    Appl Opt; 2015 Jun; 54(18):5662-7. PubMed ID: 26193011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial control of entangled two-photon absorption with organic chromophores.
    Guzman AR; Harpham MR; Süzer O; Haley MM; Goodson TG
    J Am Chem Soc; 2010 Jun; 132(23):7840-1. PubMed ID: 20496892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Pure State Photon Triplets in the C-Band.
    Su XR; Huang YW; Xiang T; Li YH; Chen XF
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31766172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber.
    Takesue H; Inoue K
    Opt Express; 2005 Oct; 13(20):7832-9. PubMed ID: 19498811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum optical measurements with undetected photons through vacuum field indistinguishability.
    Lee SK; Yoon TH; Cho M
    Sci Rep; 2017 Jul; 7(1):6558. PubMed ID: 28747682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.