These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24266809)

  • 1. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on Investigating the Interactions between Nanoparticles and the Pulmonary Surfactant Monolayer with Coarse-Grained Molecular Dynamics Method.
    Tang K; Cui X
    Langmuir; 2024 Jun; 40(23):11829-11842. PubMed ID: 38809819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant.
    Fan Q; Wang YE; Zhao X; Loo JS; Zuo YY
    ACS Nano; 2011 Aug; 5(8):6410-6. PubMed ID: 21761867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of nanoparticles affecting their fate and the physiological function of pulmonary surfactants.
    Liu Q; Guan J; Song R; Zhang X; Mao S
    Acta Biomater; 2022 Mar; 140():76-87. PubMed ID: 34843949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.
    Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity.
    Wohlleben W; Driessen MD; Raesch S; Schaefer UF; Schulze C; Vacano Bv; Vennemann A; Wiemann M; Ruge CA; Platsch H; Mues S; Ossig R; Tomm JM; Schnekenburger J; Kuhlbusch TA; Luch A; Lehr CM; Haase A
    Nanotoxicology; 2016 Sep; 10(7):970-80. PubMed ID: 26984182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant.
    Bai X; Xu M; Liu S; Hu G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20368-20376. PubMed ID: 29808987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle translocation across the lung surfactant film regulated by grafting polymers.
    Bai X; Li M; Hu G
    Nanoscale; 2020 Feb; 12(6):3931-3940. PubMed ID: 32003385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles.
    Hu Q; Bai X; Hu G; Zuo YY
    ACS Nano; 2017 Jul; 11(7):6832-6842. PubMed ID: 28541666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles.
    Garcia-Mouton C; Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2019 Nov; 144():230-243. PubMed ID: 31560956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study.
    Xu Y; Deng L; Ren H; Zhang X; Huang F; Yue T
    Phys Chem Chem Phys; 2017 Jul; 19(27):17568-17576. PubMed ID: 28621369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle.
    Choe S; Chang R; Jeon J; Violi A
    Biophys J; 2008 Nov; 95(9):4102-14. PubMed ID: 18923102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution investigation of nanoparticle interaction with a model pulmonary surfactant monolayer.
    Sachan AK; Harishchandra RK; Bantz C; Maskos M; Reichelt R; Galla HJ
    ACS Nano; 2012 Feb; 6(2):1677-87. PubMed ID: 22288983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Simulation Study on the Interaction Between Pollutant Nanoparticles and the Pulmonary Surfactant Monolayer.
    Yue K; Sun X; Tang J; Wei Y; Zhang X
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Lipid Coating in the Transport of Nanodroplets across the Pulmonary Surfactant Layer Revealed by Molecular Dynamics Simulations.
    Xu Y; Li S; Luo Z; Ren H; Zhang X; Huang F; Zuo YY; Yue T
    Langmuir; 2018 Jul; 34(30):9054-9063. PubMed ID: 29985617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barrier or carrier? Pulmonary surfactant and drug delivery.
    Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):117-27. PubMed ID: 25709061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins.
    Guagliardo R; Pérez-Gil J; De Smedt S; Raemdonck K
    J Control Release; 2018 Dec; 291():116-126. PubMed ID: 30321577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulations of lung surfactant.
    Baoukina S; Tieleman DP
    Biochim Biophys Acta; 2016 Oct; 1858(10):2431-2440. PubMed ID: 26922885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations.
    Jiao F; Sang J; Liu Z; Liu W; Liang W
    Biophys Chem; 2020 Nov; 266():106457. PubMed ID: 32890945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.