BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24266809)

  • 1. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on Investigating the Interactions between Nanoparticles and the Pulmonary Surfactant Monolayer with Coarse-Grained Molecular Dynamics Method.
    Tang K; Cui X
    Langmuir; 2024 Jun; 40(23):11829-11842. PubMed ID: 38809819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant.
    Fan Q; Wang YE; Zhao X; Loo JS; Zuo YY
    ACS Nano; 2011 Aug; 5(8):6410-6. PubMed ID: 21761867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of nanoparticles affecting their fate and the physiological function of pulmonary surfactants.
    Liu Q; Guan J; Song R; Zhang X; Mao S
    Acta Biomater; 2022 Mar; 140():76-87. PubMed ID: 34843949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.
    Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity.
    Wohlleben W; Driessen MD; Raesch S; Schaefer UF; Schulze C; Vacano Bv; Vennemann A; Wiemann M; Ruge CA; Platsch H; Mues S; Ossig R; Tomm JM; Schnekenburger J; Kuhlbusch TA; Luch A; Lehr CM; Haase A
    Nanotoxicology; 2016 Sep; 10(7):970-80. PubMed ID: 26984182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant.
    Bai X; Xu M; Liu S; Hu G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20368-20376. PubMed ID: 29808987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle translocation across the lung surfactant film regulated by grafting polymers.
    Bai X; Li M; Hu G
    Nanoscale; 2020 Feb; 12(6):3931-3940. PubMed ID: 32003385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles.
    Hu Q; Bai X; Hu G; Zuo YY
    ACS Nano; 2017 Jul; 11(7):6832-6842. PubMed ID: 28541666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles.
    Garcia-Mouton C; Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2019 Nov; 144():230-243. PubMed ID: 31560956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study.
    Xu Y; Deng L; Ren H; Zhang X; Huang F; Yue T
    Phys Chem Chem Phys; 2017 Jul; 19(27):17568-17576. PubMed ID: 28621369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle.
    Choe S; Chang R; Jeon J; Violi A
    Biophys J; 2008 Nov; 95(9):4102-14. PubMed ID: 18923102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution investigation of nanoparticle interaction with a model pulmonary surfactant monolayer.
    Sachan AK; Harishchandra RK; Bantz C; Maskos M; Reichelt R; Galla HJ
    ACS Nano; 2012 Feb; 6(2):1677-87. PubMed ID: 22288983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Simulation Study on the Interaction Between Pollutant Nanoparticles and the Pulmonary Surfactant Monolayer.
    Yue K; Sun X; Tang J; Wei Y; Zhang X
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Lipid Coating in the Transport of Nanodroplets across the Pulmonary Surfactant Layer Revealed by Molecular Dynamics Simulations.
    Xu Y; Li S; Luo Z; Ren H; Zhang X; Huang F; Zuo YY; Yue T
    Langmuir; 2018 Jul; 34(30):9054-9063. PubMed ID: 29985617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barrier or carrier? Pulmonary surfactant and drug delivery.
    Hidalgo A; Cruz A; Pérez-Gil J
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt A):117-27. PubMed ID: 25709061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins.
    Guagliardo R; Pérez-Gil J; De Smedt S; Raemdonck K
    J Control Release; 2018 Dec; 291():116-126. PubMed ID: 30321577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulations of lung surfactant.
    Baoukina S; Tieleman DP
    Biochim Biophys Acta; 2016 Oct; 1858(10):2431-2440. PubMed ID: 26922885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations.
    Jiao F; Sang J; Liu Z; Liu W; Liang W
    Biophys Chem; 2020 Nov; 266():106457. PubMed ID: 32890945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.