These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2426705)

  • 1. Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog Rana pipiens.
    Kuljis RO; Karten HJ
    Proc Natl Acad Sci U S A; 1986 Aug; 83(15):5736-40. PubMed ID: 2426705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regeneration of peptide-containing retinofugal axons into the optic tectum with reappearance of a substance P-containing lamina.
    Kuljis RO; Karten HJ
    J Comp Neurol; 1985 Oct; 240(1):1-15. PubMed ID: 2414340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number.
    Norden JJ; Constantine-Paton M
    J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optic tectum following retinal deafferentation.
    Kuljis RO; Karten HJ
    J Comp Neurol; 1983 Jul; 217(3):239-51. PubMed ID: 6193148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth cone-target interactions in the frog retinotectal pathway.
    Reh TA; Constantine-Paton M
    J Neurosci Res; 1985; 13(1-2):89-100. PubMed ID: 2983078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of non-retinal afferent projections to the frog optic tectum and the substance P immunoreactivity of tectal connections.
    Debski EA; Constantine-Paton M
    Brain Res Dev Brain Res; 1993 Mar; 72(1):21-39. PubMed ID: 7680968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal ganglion cell terminals change their projection sites during larval development of Rana pipiens.
    Reh TA; Constantine-Paton M
    J Neurosci; 1984 Feb; 4(2):442-57. PubMed ID: 6607979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for centripetally shifting terminals on the tectum of postmetamorphic Rana pipiens.
    Hitchcock PF; Easter SS
    J Comp Neurol; 1987 Dec; 266(4):556-64. PubMed ID: 3501793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog.
    Sargent PB; Pike SH; Nadel DB; Lindstrom JM
    J Neurosci; 1989 Feb; 9(2):565-73. PubMed ID: 2645388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre- and postsynaptic correlates of interocular competition and segregation in the frog.
    Constantine-Paton M; Ferrari-Eastman P
    J Comp Neurol; 1987 Jan; 255(2):178-95. PubMed ID: 3493268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and regulation of substance P expression in neurons of the tadpole optic tectum.
    Tu S; Debski EA
    Vis Neurosci; 1999; 16(4):695-705. PubMed ID: 10431918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in brain-derived neurotrophic factor and trkB receptor in the adult Rana pipiens retina and optic tectum after optic nerve injury.
    Duprey-Díaz MV; Soto I; Blagburn JM; Blanco RE
    J Comp Neurol; 2002 Dec; 454(4):456-69. PubMed ID: 12455009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotine exposure refines visual map topography through an NMDA receptor-mediated pathway.
    Yan X; Zhao B; Butt CM; Debski EA
    Eur J Neurosci; 2006 Dec; 24(11):3026-42. PubMed ID: 17156364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axons added to the regenerated visual pathway of goldfish establish a normal fiber topography along the age-axis.
    Bernhardt R; Easter SS; Raymond PA
    J Comp Neurol; 1988 Nov; 277(3):420-9. PubMed ID: 3198799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog: I. The size of the contralateral and ipsilateral projections.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Dec; 302(4):792-809. PubMed ID: 1707068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target-independent diversification and target-specific projection of chemically defined retinal ganglion cell subsets.
    Yamagata M; Sanes JR
    Development; 1995 Nov; 121(11):3763-76. PubMed ID: 8582286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rearrangements of the retinotectal projection in Rana pipiens after unilateral caudal half-tectum ablation.
    Udin SB
    J Comp Neurol; 1977 Jun; 173(3):561-82. PubMed ID: 300744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.