These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2426705)

  • 21. Expression of the axonal cell adhesion molecules axonin-1 and Ng-CAM during the development of the chick retinotectal system.
    Rager G; Morino P; Schnitzer J; Sonderegger P
    J Comp Neurol; 1996 Feb; 365(4):594-609. PubMed ID: 8742305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Qualitative and quantitative measures of plasticity during the normal development of the Rana pipiens retinotectal projection.
    Reh TA; Constantine-Paton M
    Brain Res; 1983 Nov; 312(2):187-200. PubMed ID: 6606482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations.
    Sakaguchi DS; Murphey RK
    J Neurosci; 1985 Dec; 5(12):3228-45. PubMed ID: 3001241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus).
    Ehrlich D; Keyser KT; Karten HJ
    J Comp Neurol; 1987 Dec; 266(2):220-33. PubMed ID: 2449469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotrophins, but not depolarization, regulate substance P expression in the developing optic tectum.
    Tu S; Debski EA
    J Neurobiol; 2001 Aug; 48(2):131-49. PubMed ID: 11438942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early development and function of the Xenopus tadpole retinotectal circuit.
    Liu Z; Hamodi AS; Pratt KG
    Curr Opin Neurobiol; 2016 Dec; 41():17-23. PubMed ID: 27475307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relationship between retinal and tectal growth in larval Xenopus: implications for the development of the retino-tectal projection.
    Gaze RM; Keating MJ; Ostberg A; Chung SH
    J Embryol Exp Morphol; 1979 Oct; 53():103-43. PubMed ID: 536683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substance P, bombesin, and leucine-enkephalin immunoreactivities are restored in the frog tectum after optic nerve regeneration.
    Humphrey MF; Renshaw GM; Kitchener PD; Beazley LD
    J Comp Neurol; 1995 Apr; 354(2):295-305. PubMed ID: 7540184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus.
    Carpenter P; Sefton AJ; Dreher B; Lim WL
    J Comp Neurol; 1986 Sep; 251(2):240-59. PubMed ID: 3782500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anatomy and physiology of experimentally produced striped tecta.
    Law MI; Constantine-Paton M
    J Neurosci; 1981 Jul; 1(7):741-59. PubMed ID: 6980968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optic nerve injury upregulates retinoic acid signaling in the adult frog visual system.
    Duprey-Díaz MV; Blagburn JM; Blanco RE
    J Chem Neuroanat; 2016 Nov; 77():80-92. PubMed ID: 27242163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional synaptic relations during the development of the retino-tectal projection in amphibians.
    Chung SH; Keating MJ; Bliss TV
    Proc R Soc Lond B Biol Sci; 1974 Nov; 187(1089):449-59. PubMed ID: 4155504
    [No Abstract]   [Full Text] [Related]  

  • 35. Changes in nNOS and NADPH diaphorase in frog retina and tectum after axotomy and FGF-2 application.
    Soto I; López-Roca T; Blagburn JM; Blanco RE
    Brain Res; 2006 Aug; 1103(1):65-75. PubMed ID: 16808907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental retinal ganglion cell death and retinotopicity of the murine retinocollicular projection.
    Beros J; Rodger J; Harvey AR
    Dev Neurobiol; 2018 Jan; 78(1):51-60. PubMed ID: 29134765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotrophin-3 and TrkC in the frog visual system: changes after axotomy.
    Duprey-Díaz MV; Blagburn JM; Blanco RE
    Brain Res; 2003 Aug; 982(1):54-63. PubMed ID: 12915240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of GAD-like immunoreactivity in the retina and central visual system of Rana pipiens.
    Tyler CJ; Fite KV; Devries GJ
    J Comp Neurol; 1995 Mar; 353(3):439-50. PubMed ID: 7751441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide-like immunoreactivity in anuran optic nerve fibers.
    Kuljis RO; Krause JE; Karten HJ
    J Comp Neurol; 1984 Jun; 226(2):222-37. PubMed ID: 6203943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.