These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 24267065)

  • 1. Using random forest to classify T-cell epitopes based on amino acid properties and molecular features.
    Huang JH; Xie HL; Yan J; Lu HM; Xu QS; Liang YZ
    Anal Chim Acta; 2013 Dec; 804():70-5. PubMed ID: 24267065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using random forest to classify linear B-cell epitopes based on amino acid properties and molecular features.
    Huang JH; Wen M; Tang LJ; Xie HL; Fu L; Liang YZ; Lu HM
    Biochimie; 2014 Aug; 103():1-6. PubMed ID: 24721579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of T-cell epitopes based on least squares support vector machines and amino acid properties.
    Li S; Yao X; Liu H; Li J; Fan B
    Anal Chim Acta; 2007 Feb; 584(1):37-42. PubMed ID: 17386582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.
    Moghram BA; Nabil E; Badr A
    Comput Methods Programs Biomed; 2018 Jan; 153():161-170. PubMed ID: 29157448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning.
    Zhang W; Niu Y; Zou H; Luo L; Liu Q; Wu W
    PLoS One; 2015; 10(5):e0128194. PubMed ID: 26020952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide vaccines incorporating a 'promiscuous' T-cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity.
    Kaumaya PT; Kobs-Conrad S; Seo YH; Lee H; VanBuskirk AM; Feng N; Sheridan JF; Stevens V
    J Mol Recognit; 1993 Jun; 6(2):81-94. PubMed ID: 7508238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of CTL epitopes using QM, SVM and ANN techniques.
    Bhasin M; Raghava GP
    Vaccine; 2004 Aug; 22(23-24):3195-204. PubMed ID: 15297074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
    Wang L; Liu ZP; Zhang XS; Chen L
    Protein Eng Des Sel; 2012 Mar; 25(3):119-26. PubMed ID: 22258275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of T-cell epitopes using biosupport vector machines.
    Yang ZR; Johnson FC
    J Chem Inf Model; 2005; 45(5):1424-8. PubMed ID: 16180919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network-based prediction of candidate T-cell epitopes.
    Honeyman MC; Brusic V; Stone NL; Harrison LC
    Nat Biotechnol; 1998 Oct; 16(10):966-9. PubMed ID: 9788355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing bovine T cell vaccines via reverse immunology.
    Nene V; Svitek N; Toye P; Golde WT; Barlow J; Harndahl M; Buus S; Nielsen M
    Ticks Tick Borne Dis; 2012 Jun; 3(3):188-92. PubMed ID: 22621863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where are peptides taking us in T-cell biology?
    Mitchison NA
    Leukemia; 1993 Aug; 7 Suppl 2():S160-7. PubMed ID: 7689673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTTCA-RF: a random forest predictor for tumor T cell antigens.
    Jiao S; Zou Q; Guo H; Shi L
    J Transl Med; 2021 Oct; 19(1):449. PubMed ID: 34706730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93-103).
    Reay PA; Kantor RM; Davis MM
    J Immunol; 1994 Apr; 152(8):3946-57. PubMed ID: 7511662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression mapping using a retroviral vector for CD8+ T cell epitopes: definition of a Mycobacterium tuberculosis peptide presented by H2-Dd.
    Aoshi T; Suzuki M; Uchijima M; Nagata T; Koide Y
    J Immunol Methods; 2005 Mar; 298(1-2):21-34. PubMed ID: 15847794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAAQD: Predicting immunogenicity of MHC class I binding peptides using amino acid pairwise contact potentials and quantum topological molecular similarity descriptors.
    Saethang T; Hirose O; Kimkong I; Tran VA; Dang XT; Nguyen LA; Le TK; Kubo M; Yamada Y; Satou K
    J Immunol Methods; 2013 Jan; 387(1-2):293-302. PubMed ID: 23058674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.