BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24267147)

  • 1. Evaluating a linear k-mer model for protein-DNA interactions using high-throughput SELEX data.
    Kähärä J; Lähdesmäki H
    BMC Bioinformatics; 2013; 14 Suppl 10(Suppl 10):S2. PubMed ID: 24267147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative analysis of transcription factor binding models learned from PBM, HT-SELEX and ChIP data.
    Orenstein Y; Shamir R
    Nucleic Acids Res; 2014 Apr; 42(8):e63. PubMed ID: 24500199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel
    Guo Y; Tian K; Zeng H; Guo X; Gifford DK
    Genome Res; 2018 Jun; 28(6):891-900. PubMed ID: 29654070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of models in predicting the effects of SNPs on TF-DNA binding using large-scale in vitro and in vivo data.
    Han D; Li Y; Wang L; Liang X; Miao Y; Li W; Wang S; Wang Z
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38517697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Better estimation of protein-DNA interaction parameters improve prediction of functional sites.
    Nagaraj VH; O'Flanagan RA; Sengupta AM
    BMC Biotechnol; 2008 Dec; 8():94. PubMed ID: 19105805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.
    Smaczniak C; Angenent GC; Kaufmann K
    Methods Mol Biol; 2017; 1629():67-82. PubMed ID: 28623580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro DNA-binding profile of transcription factors: methods and new insights.
    Wang J; Lu J; Gu G; Liu Y
    J Endocrinol; 2011 Jul; 210(1):15-27. PubMed ID: 21389103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.
    Ma X; Kulkarni A; Zhang Z; Xuan Z; Serfling R; Zhang MQ
    Nucleic Acids Res; 2012 Apr; 40(7):e50. PubMed ID: 22228832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities.
    Nitta KR; Vincentelli R; Jacox E; Cimino A; Ohtsuka Y; Sobral D; Satou Y; Cambillau C; Lemaire P
    Methods Mol Biol; 2019; 2025():487-517. PubMed ID: 31267468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
    Ma W; Yang L; Rohs R; Noble WS
    Bioinformatics; 2017 Oct; 33(19):3003-3010. PubMed ID: 28541376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach for transcription factor analysis using SELEX with high-throughput sequencing (TFAST).
    Reiss DJ; Howard FM; Mobley HL
    PLoS One; 2012; 7(8):e42761. PubMed ID: 22956994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights gained from a comprehensive all-against-all transcription factor binding motif benchmarking study.
    Ambrosini G; Vorontsov I; Penzar D; Groux R; Fornes O; Nikolaeva DD; Ballester B; Grau J; Grosse I; Makeev V; Kulakovskiy I; Bucher P
    Genome Biol; 2020 May; 21(1):114. PubMed ID: 32393327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TherMos: Estimating protein-DNA binding energies from in vivo binding profiles.
    Sun W; Hu X; Lim MH; Ng CK; Choo SH; Castro DS; Drechsel D; Guillemot F; Kolatkar PR; Jauch R; Prabhakar S
    Nucleic Acids Res; 2013 Jun; 41(11):5555-68. PubMed ID: 23595148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.