BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24267344)

  • 21. Raman and ROA spectra of (-)- and (+)-2-Br-hexahelicene: experimental and DFT studies of a π-conjugated chiral system.
    Johannessen C; Blanch EW; Villani C; Abbate S; Longhi G; Agarwal NR; Tommasini M; Lightner DA
    J Phys Chem B; 2013 Feb; 117(7):2221-30. PubMed ID: 23343455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data.
    Zhu F; Kapitan J; Tranter GE; Pudney PD; Isaacs NW; Hecht L; Barron LD
    Proteins; 2008 Feb; 70(3):823-33. PubMed ID: 17729278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibrational and electronic optical activity of the chiral disulphide group: implications for disulphide bridge conformation.
    Bednárová L; Bour P; Malon P
    Chirality; 2010 May; 22(5):514-26. PubMed ID: 19725095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman Optical Activity and Raman spectroscopy of carbohydrates in solution.
    Dudek M; Zajac G; Szafraniec E; Wiercigroch E; Tott S; Malek K; Kaczor A; Baranska M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():597-612. PubMed ID: 30196153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH-dependent chirality of L-proline studied by Raman optical activity and density functional theory calculation.
    Qiu S; Li G; Wang P; Zhou J; Feng Z; Li C
    J Phys Chem A; 2011 Mar; 115(8):1340-9. PubMed ID: 21309515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stereostructural Elucidation of Glucose Phosphorylation by Raman Optical Activity.
    Tang Y; Cheng F; Feng Z; Jia G; Li C
    J Phys Chem B; 2019 Sep; 123(37):7794-7800. PubMed ID: 31335146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative studies on IR, Raman, and surface enhanced Raman scattering spectroscopy of dipeptides containing ΔAla and ΔPhe.
    Malek K; Makowski M; Królikowska A; Bukowska J
    J Phys Chem B; 2012 Feb; 116(4):1414-25. PubMed ID: 22208201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman Optical Activity of 1T-TaS
    Lacinska EM; Furman M; Binder J; Lutsyk I; Kowalczyk PJ; Stepniewski R; Wysmolek A
    Nano Lett; 2022 Apr; 22(7):2835-2842. PubMed ID: 35369696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation detection and characterization in ribonucleotides using Raman and Raman optical activity (ROA) spectroscopies.
    Ostovarpour S; Blanch EW
    Appl Spectrosc; 2012 Mar; 66(3):289-93. PubMed ID: 22449305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
    Fang Y; Zhang Z; Chen L; Sun M
    Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical properties of S
    Wang X; Yan P; Mu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117532. PubMed ID: 31831307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate determination of protein secondary structure content from Raman and Raman optical activity spectra.
    Kinalwa MN; Blanch EW; Doig AJ
    Anal Chem; 2010 Aug; 82(15):6347-9. PubMed ID: 20669990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determining the absolute configuration of two marine compounds using vibrational chiroptical spectroscopy.
    Hopmann KH; Šebestík J; Novotná J; Stensen W; Urbanová M; Svenson J; Svendsen JS; Bouř P; Ruud K
    J Org Chem; 2012 Jan; 77(2):858-69. PubMed ID: 22148737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and vibrational motion of insulin from Raman optical activity spectra.
    Yamamoto S; Kaminský J; Bouř P
    Anal Chem; 2012 Mar; 84(5):2440-51. PubMed ID: 22263577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beta-sheet and associated turn signatures in vibrational Raman optical activity spectra of proteins.
    Wen ZQ; Hecht L; Barron LD
    Protein Sci; 1994 Mar; 3(3):435-9. PubMed ID: 7912598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational spectroscopic, electronic and quantum chemical investigations on 2,3-hexadiene.
    Jayaprakash A; Arjunan V; Mohan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):620-30. PubMed ID: 21763179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review.
    He Y; Wang B; Dukor RK; Nafie LA
    Appl Spectrosc; 2011 Jul; 65(7):699-723. PubMed ID: 21740631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation into a surface plasmon related heating effect in surface enhanced Raman spectroscopy.
    Kho KW; Shen ZX; Lei Z; Watt F; Soo KC; Olivo M
    Anal Chem; 2007 Dec; 79(23):8870-82. PubMed ID: 17956145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.