These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24267383)

  • 21. Prediction of disulfide bond engineering sites using a machine learning method.
    Gao X; Dong X; Li X; Liu Z; Liu H
    Sci Rep; 2020 Jun; 10(1):10330. PubMed ID: 32587353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Context-based features enhance protein secondary structure prediction accuracy.
    Yaseen A; Li Y
    J Chem Inf Model; 2014 Mar; 54(3):992-1002. PubMed ID: 24571803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of reversible disulfide based on features from local structural signatures.
    Sun MA; Wang Y; Zhang Q; Xia Y; Ge W; Guo D
    BMC Genomics; 2017 Apr; 18(1):279. PubMed ID: 28376774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.
    Becker J; Maes F; Wehenkel L
    PLoS One; 2013; 8(2):e56621. PubMed ID: 23533562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inter- and intra-chain disulfide bond prediction based on optimal feature selection.
    Niu S; Huang T; Feng KY; He Z; Cui W; Gu L; Li H; Cai YD; Li Y
    Protein Pept Lett; 2013 Mar; 20(3):324-35. PubMed ID: 22591475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FLEXc: protein flexibility prediction using context-based statistics, predicted structural features, and sequence information.
    Yaseen A; Nijim M; Williams B; Qian L; Li M; Wang J; Li Y
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):281. PubMed ID: 27587065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local Similarity Matrix for Cysteine Disulfide Connectivity Prediction from Protein Sequences.
    Mapes NJ; Rodriguez C; Chowriappa P; Dua S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1276-1289. PubMed ID: 30640622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation.
    Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C
    Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines.
    Lin HH; Hsu JC; Hsu YN; Pan RH; Chen YF; Tseng LY
    Comput Biol Med; 2013 Nov; 43(11):1941-8. PubMed ID: 24209939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins.
    Fariselli P; Riccobelli P; Casadio R
    Proteins; 1999 Aug; 36(3):340-6. PubMed ID: 10409827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting disulfide bond connectivity in proteins by correlated mutations analysis.
    Rubinstein R; Fiser A
    Bioinformatics; 2008 Feb; 24(4):498-504. PubMed ID: 18203772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification.
    Ferrè F; Clote P
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W182-5. PubMed ID: 16844987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of the disulfide bonding state of cysteines in proteins with hidden neural networks.
    Martelli PL; Fariselli P; Malaguti L; Casadio R
    Protein Eng; 2002 Dec; 15(12):951-3. PubMed ID: 12601133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of the structures of proteins with the UNRES force field, including dynamic formation and breaking of disulfide bonds.
    Czaplewski C; Oldziej S; Liwo A; Scheraga HA
    Protein Eng Des Sel; 2004 Jan; 17(1):29-36. PubMed ID: 14985535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of the disulfide-bonding state of cysteines in proteins at 88% accuracy.
    Martelli PL; Fariselli P; Malaguti L; Casadio R
    Protein Sci; 2002 Nov; 11(11):2735-9. PubMed ID: 12381855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins.
    Raso SW; Clark PL; Haase-Pettingell C; King J; Thomas GJ
    J Mol Biol; 2001 Mar; 307(3):899-911. PubMed ID: 11273709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations.
    Savojardo C; Fariselli P; Martelli PL; Casadio R
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S10. PubMed ID: 23368835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One short cysteine-rich sequence pattern - two different disulfide-bonded structures - a molecular dynamics simulation study.
    Dames SA
    J Pept Sci; 2015 Jun; 21(6):480-94. PubMed ID: 25781269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the prediction of disulfide bonds in Eukaryotes with machine learning methods and protein subcellular localization.
    Savojardo C; Fariselli P; Alhamdoosh M; Martelli PL; Pierleoni A; Casadio R
    Bioinformatics; 2011 Aug; 27(16):2224-30. PubMed ID: 21715467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.