BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 24267548)

  • 1. Lymphovascular and neural regulation of metastasis: shared tumour signalling pathways and novel therapeutic approaches.
    Le CP; Karnezis T; Achen MG; Stacker SA; Sloan EK
    Best Pract Res Clin Anaesthesiol; 2013 Dec; 27(4):409-25. PubMed ID: 24267548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis.
    Cao Z; Shang B; Zhang G; Miele L; Sarkar FH; Wang Z; Zhou Q
    Biochim Biophys Acta; 2013 Dec; 1836(2):273-86. PubMed ID: 23933263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the role of co-receptor neuropilins in tumour angiogenesis and lymphangiogenesis and targeted therapy strategies.
    Zhao L; Chen H; Lu L; Wang L; Zhang X; Guo X
    J Drug Target; 2021 Feb; 29(2):155-167. PubMed ID: 32838575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docetaxel facilitates lymphatic-tumor crosstalk to promote lymphangiogenesis and cancer progression.
    Harris AR; Perez MJ; Munson JM
    BMC Cancer; 2018 Jul; 18(1):718. PubMed ID: 29976154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiogenesis and Oxidative Stress in Metastatic Tumor Progression: Pathogenesis and Novel Therapeutic Approach of Colon Cancer.
    Auyeung KK; Ko JK
    Curr Pharm Des; 2017; 23(27):3952-3961. PubMed ID: 28245762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer.
    Lala PK; Nandi P; Majumder M
    Cancer Metastasis Rev; 2018 Sep; 37(2-3):369-384. PubMed ID: 29858743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions.
    Majumder M; Xin X; Liu L; Girish GV; Lala PK
    Cancer Sci; 2014 Sep; 105(9):1142-51. PubMed ID: 24981602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The critical role of vascular endothelial growth factor in tumor angiogenesis.
    Amini A; Masoumi Moghaddam S; Morris DL; Pourgholami MH
    Curr Cancer Drug Targets; 2012 Jan; 12(1):23-43. PubMed ID: 22111836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor.
    Zhao Y; Adjei AA
    Oncologist; 2015 Jun; 20(6):660-73. PubMed ID: 26001391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis.
    Schomber T; Zumsteg A; Strittmatter K; Crnic I; Antoniadis H; Littlewood-Evans A; Wood J; Christofori G
    Mol Cancer Ther; 2009 Jan; 8(1):55-63. PubMed ID: 19139113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor lymphangiogenesis and new drug development.
    Dieterich LC; Detmar M
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt B):148-160. PubMed ID: 26705849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis.
    Yehya AHS; Asif M; Petersen SH; Subramaniam AV; Kono K; Majid AMSA; Oon CE
    Medicina (Kaunas); 2018 Mar; 54(1):. PubMed ID: 30344239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance and therapeutic implications of endothelial progenitor cells in angiogenic-mediated tumour metastasis.
    Flamini V; Jiang WG; Lane J; Cui YX
    Crit Rev Oncol Hematol; 2016 Apr; 100():177-89. PubMed ID: 26917455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination.
    Le CP; Nowell CJ; Kim-Fuchs C; Botteri E; Hiller JG; Ismail H; Pimentel MA; Chai MG; Karnezis T; Rotmensz N; Renne G; Gandini S; Pouton CW; Ferrari D; Möller A; Stacker SA; Sloan EK
    Nat Commun; 2016 Mar; 7():10634. PubMed ID: 26925549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Gene Expression by Exosome-Derived Non-Coding RNAs in Cancer Angiogenesis and Lymphangiogenesis.
    Arcucci V; Stacker SA; Achen MG
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33572413
    [No Abstract]   [Full Text] [Related]  

  • 16. Molecular control of lymphatic metastasis.
    Achen MG; Stacker SA
    Ann N Y Acad Sci; 2008; 1131():225-34. PubMed ID: 18519975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of integrins in tumor angiogenesis and lymphangiogenesis.
    Garmy-Susini B; Varner JA
    Lymphat Res Biol; 2008; 6(3-4):155-63. PubMed ID: 19093788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer-associated fibroblasts in renal cell carcinoma: implication in prognosis and resistance to anti-angiogenic therapy.
    Ambrosetti D; Coutts M; Paoli C; Durand M; Borchiellini D; Montemagno C; Rastoin O; Borderie A; Grepin R; Rioux-Leclercq N; Bernhard JC; Pagès G; Dufies M
    BJU Int; 2022 Jan; 129(1):80-92. PubMed ID: 34107167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparanase: From basic research to therapeutic applications in cancer and inflammation.
    Vlodavsky I; Singh P; Boyango I; Gutter-Kapon L; Elkin M; Sanderson RD; Ilan N
    Drug Resist Updat; 2016 Nov; 29():54-75. PubMed ID: 27912844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the angio-proteostasis network: Combining the forces against cancer.
    Devisscher L; Vieri M; Logue SE; Panse J; Geerts A; van Vlierberghe H; Chevet E; Gorman AM; Samali A; Kharabi Masouleh B
    Pharmacol Ther; 2016 Nov; 167():1-12. PubMed ID: 27452337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.