These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24267585)

  • 1. A study and benchmark of DNcon: a method for protein residue-residue contact prediction using deep networks.
    Eickholt J; Cheng J
    BMC Bioinformatics; 2013; 14 Suppl 14(Suppl 14):S12. PubMed ID: 24267585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein residue-residue contacts using deep networks and boosting.
    Eickholt J; Cheng J
    Bioinformatics; 2012 Dec; 28(23):3066-72. PubMed ID: 23047561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Residue Contacts and Prediction Methods.
    Adhikari B; Cheng J
    Methods Mol Biol; 2016; 1415():463-76. PubMed ID: 27115648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of residue-residue contact prediction in CASP10.
    Monastyrskyy B; D'Andrea D; Fidelis K; Tramontano A; Kryshtafovych A
    Proteins; 2014 Feb; 82 Suppl 2(0 2):138-53. PubMed ID: 23760879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8.
    Ezkurdia I; Graña O; Izarzugaza JM; Tress ML
    Proteins; 2009; 77 Suppl 9():196-209. PubMed ID: 19714769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A further leap of improvement in tertiary structure prediction in CASP13 prompts new routes for future assessments.
    Abriata LA; Tamò GE; Dal Peraro M
    Proteins; 2019 Dec; 87(12):1100-1112. PubMed ID: 31344267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques.
    Cao R; Adhikari B; Bhattacharya D; Sun M; Hou J; Cheng J
    Bioinformatics; 2017 Feb; 33(4):586-588. PubMed ID: 28035027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting residue-residue contacts using random forest models.
    Li Y; Fang Y; Fang J
    Bioinformatics; 2011 Dec; 27(24):3379-84. PubMed ID: 22016406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator.
    Rawi R; Mall R; Kunji K; El Anbari M; Aupetit M; Ullah E; Bensmail H
    BMC Bioinformatics; 2016 Dec; 17(1):533. PubMed ID: 27978812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-stage approach for improved prediction of residue contact maps.
    Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning framework for improving long-range residue-residue contact prediction using a hierarchical strategy.
    Xiong D; Zeng J; Gong H
    Bioinformatics; 2017 Sep; 33(17):2675-2683. PubMed ID: 28472263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting residue-residue contact maps by a two-layer, integrated neural-network method.
    Xue B; Faraggi E; Zhou Y
    Proteins; 2009 Jul; 76(1):176-83. PubMed ID: 19137600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving accuracy of protein contact prediction using balanced network deconvolution.
    Sun HP; Huang Y; Wang XF; Zhang Y; Shen HB
    Proteins; 2015 Mar; 83(3):485-96. PubMed ID: 25524593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CONFOLD: Residue-residue contact-guided ab initio protein folding.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Proteins; 2015 Aug; 83(8):1436-49. PubMed ID: 25974172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure.
    Ji S; Oruç T; Mead L; Rehman MF; Thomas CM; Butterworth S; Winn PJ
    PLoS One; 2019; 14(1):e0205214. PubMed ID: 30620738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.