These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24267585)

  • 21. COMTOP: Protein Residue-Residue Contact Prediction through Mixed Integer Linear Optimization.
    Reza MS; Zhang H; Hossain MT; Jin L; Feng S; Wei Y
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34209399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of residue pairing in interacting β-strands from a predicted residue contact map.
    Mao W; Wang T; Zhang W; Gong H
    BMC Bioinformatics; 2018 Apr; 19(1):146. PubMed ID: 29673311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of protein assembly prediction in CASP12.
    Lafita A; Bliven S; Kryshtafovych A; Bertoni M; Monastyrskyy B; Duarte JM; Schwede T; Capitani G
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):247-256. PubMed ID: 29071742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction.
    Wu S; Zhang Y
    Bioinformatics; 2008 Apr; 24(7):924-31. PubMed ID: 18296462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods.
    Abriata LA; Tamò GE; Monastyrskyy B; Kryshtafovych A; Dal Peraro M
    Proteins; 2018 Mar; 86 Suppl 1():97-112. PubMed ID: 29139163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BCL::contact-low confidence fold recognition hits boost protein contact prediction and de novo structure determination.
    Karakaş M; Woetzel N; Meiler J
    J Comput Biol; 2010 Feb; 17(2):153-68. PubMed ID: 19772383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
    Yang J; Jin QY; Zhang B; Shen HB
    Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of residue-residue contact prediction methods: From retrospective to prospective.
    Zhang H; Bei Z; Xi W; Hao M; Ju Z; Saravanan KM; Zhang H; Guo N; Wei Y
    PLoS Comput Biol; 2021 May; 17(5):e1009027. PubMed ID: 34029314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the accuracy of contact and distance predictions in CASP14.
    Ruiz-Serra V; Pontes C; Milanetti E; Kryshtafovych A; Lepore R; Valencia A
    Proteins; 2021 Dec; 89(12):1888-1900. PubMed ID: 34595772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling.
    Bhattacharya D; Cao R; Cheng J
    Bioinformatics; 2016 Sep; 32(18):2791-9. PubMed ID: 27259540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. iQDeep: an integrated web server for protein scoring using multiscale deep learning models.
    Shuvo MH; Karim M; Bhattacharya D
    J Mol Biol; 2023 Jul; 435(14):168057. PubMed ID: 37356909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of residue-residue contact predictions in CASP9.
    Monastyrskyy B; Fidelis K; Tramontano A; Kryshtafovych A
    Proteins; 2011; 79 Suppl 10(Suppl 10):119-25. PubMed ID: 21928322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forecasting residue-residue contact prediction accuracy.
    Wozniak PP; Konopka BM; Xu J; Vriend G; Kotulska M
    Bioinformatics; 2017 Nov; 33(21):3405-3414. PubMed ID: 29036497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of deep learning methods for blind protein contact prediction in CASP12.
    Wang S; Sun S; Xu J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
    Kosciolek T; Jones DT
    PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.